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Synchronization in chaotic Hamiltonian systems and a geophysical application

A. Hannachi
Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 25 January 1999!

This paper addresses the question of the rate of synchronization of two identical systems as a function of the
inserting time intervalDt between inserted variables of the driving system in the role of the same variables of
the driven system in a simplified Hamiltonian system and its application to a simplified geophysical model. We
start by analyzing the synchronization in a simplified two-degree Hamiltonian system. The synchronization rate
turns out to be a decreasing function of the inserting time intervalDt up to a certain limitDto where the
process reverses and the synchronization rate becomes slower as the inserting frequency decreases. The key
point of the analysis uses a second-order Taylor expansion of the system resolvent which indicates that
synchronization rate is basically of orderO(Dt2) for small Dt. The study is then extended to include a
simplified geophysical system. A nonlinear one-dimensional shallow-water model on a periodic domain meant
to represent a latitudinal circle around 45 °N is used. It is found that when the zonal wind is inserted, the
maximum synchronization rate is obtained when the inserting time interval is approximately 4 h. When the
meridional wind is inserted, it is obtained at slightly less than 4 h. It is shown, in particular, that the synchro-
nization rate depends on the latitude~or the Coriolis parameter!. A low-order simplified dynamical system
derived from the one-dimensional shallow-water model is used to show that this optimum time intervalDto

when the zonal wind and the geopotential, for example, are inserted varies approximately as&/2V sinw to
accuracyO(Dt3). Analyses performed with a linear version of the shallow-water model reveal that this latter
can be used to explain the observed convergence behavior in the nonlinear model. The only point is the choice
of the stationary state for linearization purposes. It is then suggested that in more complicated geophysical
systems, the closest stationary state to the climatology can be used to estimate the crossover pointDto .
@S1063-651X~99!08507-4#

PACS number~s!: 05.45.2a, 02.30.Jr, 92.60.2e
a
es
g
.
g
n
,
al

le
a
ri-

ic

tic
er

id

r
ce

te

two
d to
re.
ed,
at
rva-
the
ea
able
cy.
se
or
rved
re-
sing
at

od
and

-
ey

is
em,
the
ms,

2 h.
er-

la-
ing
I. INTRODUCTION

Synchronization is commonly observed in low-order ch
otic and, to a lesser extent, in extended systems. Advanc
computing power have also led to a better understandin
the behavior of these systems regarding synchronization
familiar way to obtain synchronization is through couplin
of two ~or more! identical systems in a drive/response ma
ner as performed in@1#. As pointed out in the next section
the same synchronization can be obtained by periodic
inserting~or updating! one ~or more! system variables from
the driving trajectory~or control run!, obtained by running
the model forward in time, into the role of the same variab
of the driven~or response! system that is integrated with
different initial condition keeping the remaining system va
ables unchanged.

Since its introduction in low-order chaotic systems@1,2#,
synchronization has gone through a wide range of appl
tion in physical sciences. While Pecora and Caroll@1#, for
example, introduced it in connection with low-order chao
models and applied it to an electronic chaotic circuit, oth
suggested its application to filtering, by deducing the state
a chaotic system from a limited sample of observations@3#,
communications@4#, and system identification@5#. The sug-
gestion regarding the application of synchronization to flu
@2# plus its observed robustness in chaotic systems vis-a`-vis
the presence of noise@3,5# constitute a good grounding fo
geophysical application, particularly in atmospheric scien
regarding, for example, prediction. Duane@6#, who studied
the phenomenon in connection with teleconnection in me
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rology, observed a partial synchronization between the
hemispheres; the northern hemispheric flow regimes ten
partially synchronize with those of the southern hemisphe

As far as fluids and therefore meteorology are concern
the issue is of great importance. In fact, it is well known th
the current meteorological and oceanographical obse
tional network has been much improved lately regarding
quality as well as the quantity of data. For example, s
surface height data as measured by satellite are avail
with a wide spatial and temporal cover at very high accura
Although this coverage is far from satisfactory in the sen
that only a limited number of independent atmospheric
oceanic variables are observed, the subset of the obse
meteorological variables turns out to be very useful in p
dicting the future state of the ocean/atmosphere system u
numerical weather prediction models in a way similar to th
of synchronization.

Although the terminology is new in physics, the meth
has been applied in meteorology since the early 1970s
usually known as periodic updating@7–9#. For example,
Charney, Halem, and Jastrow@7# applied an updating opera
tion using a simplified model of the atmosphere. Th
showed that, when the temperature of the driving system
inserted in the role of the same variable of the driven syst
the greatest reduction of the error variance, defined as
Euclidean distance between the states of the two syste
was achieved when the temperature is inserted every 1
They pointed out that a more frequent insertion of these th
mal impulses seemed to give rise to inertio-gravity oscil
tions which prevented the dissipative forces from adjust
429 ©1999 The American Physical Society
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430 PRE 60A. HANNACHI
the wind field to the temperature field. On the other ha
investigations from a simplified one-dimensional~1D! linear
shallow-water model indicate that the inserting interv
should be greater than the decay time of inertio-grav
waves in order to avoid data redundancy@8#. Other investi-
gators observed that the synchronization was achieved fa
for some larger inserting time intervals@10#. The inserting
time interval and also the observation error along with c
tributions from other sources can have a great impact on
degradation of the synchronization@5,6,9#.

The question of the rate of synchronization as a funct
of the updating~inserting! frequency has been addressed
@11# using low-order chaotic systems. Here we investig
the same question and its application to simplified geoph
ical models. More precisely, we address the question of h
often to update, or insert, in order that the two systems
synchronized as quickly as possible. We use for this purp
a low-order chaotic Hamiltonian system as well as a sim
fied geophysical model and perform a synchronization
periment as in@1#, namely, two identical systems in drive
driven manner using~periodic! insertion of variables from
the driving signal in the role of the same variables of t
driven system. Specifically, the dynamical model is first r
with a given initial condition for a long period of time. Thi
driving trajectory, or control run, is saved and is used
perfect observations. The model is then rerun with a differ
initial condition, to yield the driven system, and periodica
updated with the same subset of variables taken from
driving trajectory, ignoring the correlation between observ
and unobserved variables, until the driven trajectory even
ally converges toward the driving trajectory. Obviously, f
large systems the two runs can be performed simultaneou

In Sec. II, we provide theoretical and experimental ana
ses of the rate of synchronization as a function of the ins
ing time interval in a simple two-degree Hamiltonian syste
Experimental analysis is extended in Sec. III to include
simplified nonlinear 1D shallow-water model. Analytic
analysis is then developed in Sec. IV by deriving a simplifi
low-order dynamical system from the shallow-water mo
to confirm the experimental results of Sec. III. In Sec. V
comparison with analyses from a linear version of t
shallow-water model is performed. Summary and conclus
are presented in the last section.

II. SYNCHRONIZED CHAOS
IN A SIMPLE HAMILTONIAN SYSTEM

A. Perturbation of dynamical systems by updating process

As pointed out earlier, a similar approach to synchroni
tion by direct coupling between two identical systems
performed originally by@1,2# can be achieved through a d
rect insertion of a subset of variables from the driving syst
in the role of the same variables in the driven system. In
operation the model is run first and the trajectory saved e
time step. The same model is then rerun with different ini
condition, the chosen variables periodically inserted, and
distance between the two system states computed. In
consider a general autonomousm-dimensional dynamica
system
,
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dX

dt
5F~X! ~1!

and denote byXT5(Xo
T ,Xu

T) whereXo stands for the driv-
ing, or observed, variables hence subscripto, while Xu rep-
resents the remaining or ‘‘unobserved’’ variables and the
perscriptT stands for the transpose operator. According
Eq. ~1! can be split into two subsystems as

Ẋo5Fo~X!,

Ẋu5Fu~X!, ~2!

where FT5(Fo
T ,Fu

T) is the corresponding split ofF. As in
@1,2#, the augmented system is

Ẋo5Fo~X!,

Ẋu5Fu~X!,
~3!

Yo5Xo ,

Ẏu5Fu~Y!,

whereYT5(Yo
T ,Yu

T) andYu represents the responding var
ables. The integration of Eq.~3! gives therefore the sam
result as the mentioned inserting procedure, obtained by
ning Eq. ~1! twice, when the insertion is performed eve
time stepdt. It is of course cheaper to run Eq.~3! than
running Eq.~1! twice as far as synchronization with identic
systems is concerned. However, for our purpose of inser
variables every time intervalDt we need in fact to integrate
Eq. ~1! twice. The reason for this, as detailed below, can
understood after writing Eq.~1! in a discretized form, or as a
map,X i 115f(X i). Now for a givenN>1 we write our new
coupled system as

Xo
i 115fo~X i !,

Xu
i 115fu~X i !,

~4!
Yo

i 115j iXo
i 111~12j i !fo~Y i !,

Yu
i 115fu~Y i !,

where the functionj i is given by

j i5 H1 if 0[ i ~mod N!

0 otherwise.

The inserting procedure for eachN steps is now straightfor-
ward from Eq.~4!. HereN is meant to represent the length
the inserting time intervalDt given in number of time steps
i.e.,Dt5Ndt. Note also from Eq.~4! that the usual coupling
@Eq. ~3!# @1,2# is obtained for the particular caseN51.

During the insertion procedure, and in the limit of sma
changes, the trajectory of Eq.~1! is being periodically dis-
turbed. Since the driving/driven systems are identical,
changes in the variableX at the time of insertion are

dXT5~dXo
T ,dXu

T!5~O,dXu
T!. ~5!
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Now a small perturbationdX0 superimposed onto Eq.~1! at
time t50 will evolve according to

ddX

dt
5F8„X~ t !…dX, ~6!

where F8„X(t)…5(]F/]X)„X(t)… is the Jacobian ofF at
X(t). The solution to Eq.~6! is given by

dX~ t !5R~ t,t0!dX~ t0!, ~7!

whereR(t,t0) is the resolvent~or propagator! of Eq. ~6!. It
can be easily verified that this latter satisfies the follow
equations:

]

]t
R~ t,t0!5F8„X~ t !…R~ t,t0!, and R~ t,t !5Im ;t,t0

~8!

whereIm is them-dimensional identity matrix. The propaga
tor R(t,t0) cannot be explicitly computed for general, an
even simple, nonlinear systems. However, for smallDt, we
can use the Taylor expansion:

R~ t01Dt,t0!5Im1Dt
]

]t
R~ t,t0!u t5t0

1¯

1
Dtn

n!

]n

]tn R~ t,t0!u t5t0
1O~Dtn11!. ~9!

To accuracyO(Dt3), the previous expansion, along with E
~8!, boil down to

R~ t01Dt,t0!5Im1DtF8„X~ t0!…

1
Dt2

2
@ Ḟ8„X~ t0!…1F82

„X~ t0!…#1O~Dt3!.

~10!

In Eq. ~10!, t0 is chosen arbitrarily as initial time but it ca
be any timetk so that the coefficients ofDt andDt2 in the
right hand side of Eq.~10! are functions of timetk . The case
where these coefficients are time independent will be
dressed in Sec. V. According to Eq.~2!, the propagatorR is
also split into four subpropagatorsRoo , Rou , Ruo , andRuu .
Using Eqs.~5! and ~7! we get the recurrence relationship;

dXu~ tk!5Ruu~ tk ,tk21!dXu~ tk21!. ~11!

The matrixRuu(tk ,tk21) is referred to as the amplificatio
matrix hereafter. The two systems therefore synchronize
the sequence of Eq.~11! is said to be convergent, ifdXu(t)
@or similarly dX(t)# tends to zero whent tends to infinity for
all initial values ofdX0 . The process is then convergent, f
small Dtk5tk2tk21 , if and only if An

5Pk51
n Ruu(tn2k11 ,tn2k) converges to the null matrix whe

n goes to infinity.
If rn5r(An) denotes the spectral radius ofAn , then a

necessary condition~and in general sufficient only for nor
mal matrices! for the process to converge is thatrn→0 when
n→`. Note also that while, in general, the resolvent ma
d-

or

-

ces are not normal, convergence does occur in the nume
experiments when the necessary condition is satisfied.

B. Application to a simple Hamiltonian system

Although Hamiltonian systems constitute a small sub
of the conservative systems, they still hold a considera
position among geophysicists’ topics. It is in fact known th
geophysical~atmosphere plus ocean! systems behave ver
much like Hamiltonian systems, especially over short pe
ods or when dissipation and forcing are weak. In fact
Hamiltonian formulation of geophysical fluid dynamics ca
be found in@13#.

For convenience and prior to using a simplified geoph
ical model, we consider here the same system used in@11#,
namely, the He´non and Heiles two-degree Hamiltonian sy
tem @14# with potentialU and HamiltonianH:

U~x,y!5 1
2 ~x21y212x2y2 2

3 y3! and

H5 1
2 ~x21y21p21q2!1x2y2 1

3 y3, ~12!

where~x,y! is the particle position and (p,q)5( ẋ,ẏ) repre-
sents the velocity of the particle in the potential wellU. The
equations of motion are given by

dX

dt
5I•“H5F~X!, ~13!

where

I5S O I2

2I2 OD ,

whereO and I2 are 232 null and identity matrices, respec
tively, and X5(x,y,p,q)T and F(X)5(p,q,2x22xy,2y
2x21y2)T. Any system trajectory is confined to a consta
energy level given by the value ofH, and the behavior of the
system phase space depends on this level where regular
observed at low levels while irregularity and chaotic beha
ior are characteristics of high energy levels@11,12#.

For this system we have

F8„X~ t !…5S O I2

A2 OD
and

Ḟ8„X~ t !…1F82
„X~ t !…5S A2 O

B2 A2
D , ~14!

where

A25S 2122y 22x

22x 2112yD and B25S 22q 22p

22p 2q D .

It is clear from Eqs.~14! and ~10! that when the position
variables~x,y! or the momentum variables~p,q! are inserted
~in the driven system!, the coefficient ofDt in Ruu is null.
This is true for all Hamiltonian systems deriving from a p
tential, i.e., both the amplification matrixRuu and the syn-
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chronization rate areO(Dt2) for smallDt. For this case, the
amplification matrixRuu

(k)5Ruu(tk ,tk21) is

Ruu
~k!5I21

Dt2

2
A2

5S 12
Dt2

2
~112yk! 2Dt2xk

2Dt2xk 12
Dt2

2
~122yk!

D ,

~15!

where (xk ,yk ,pk ,qk)5„x(tk),y(tk),p(tk),q(tk)….
In the case whereXo5(x,q)T we have

Ruu~ tk ,tk21!5S 12
Dt2

2
~112yk! 0

22xkDt2pkDt2 12
Dt2

2
~122yk!

D
~16!

and for Xo5(y,p)T, the diagonal elements of Eq.~16!
should be interchanged. For both cases, the spectral radiurn
of An is explicitly given by

rn5maxS )
k51

n U12
Dt2

2
~112yk!U,

)
k51

n U12
Dt2

2
~122yk!U D . ~17!

Appendix A shows that for smallDt, rn goes to zero asn
goes to infinity and thatrn(Dt) is a decreasing function o
Dt for Dt,&, i.e.,

rn~D2t !<rn~D1t ! for D1t<D2t,&, ~18!

whereD1t and D2t are two inserting~updating! time inter-
vals. It is also shown~Appendix A! that for two different
inserting cyclesn2<n1 for which n1D1t5n2D2t5s, that is,
the (n2 ,D2t) cycle inserts less data than (n1 ,D1t), we still
have

rn2
~D2t !<rn1

~D1t !. ~19!

As an application a driving trajectory is obtained by n
merically integrating Eq.~1! forward in time using a fourth-
order Runge-Kutta scheme in order to conserve the energH
with time stepdt5531023. Any trajectory is defined by its
initial condition, (x0 ,y0 ,q0), for example, and its energ
level H which determines the remaining variable. The inse
ing time interval is taken to be a multiple of the time ste
i.e., Dt5Ndt. As a measure of synchronization we choo
the squared error~SQE!, i.e., the squared Euclidean distanc
between the states of the two~driving and driven! systems.
In Fig. 1 we display the squared error as a function of ti
for different values ofN when~x,q! @Fig. 1~a!# and~x,y! @Fig.
1~b!# are inserted. The driving trajectory used in Fig. 1
defined by (x0 ,y0 ,q0)5(0, 0.1, 0.2) atH50.165 and corre-
sponds to a chaotic trajectory@11#. Figure 1 shows clearly
-
,
e
,

e

that the synchronization~or convergence! is faster for larger
Dt up to a maximum valueDto . Note, however, from Fig.
1~a! that curves 4 and 5 are hardly distinguishable. This i
plies thatDto'(200– 300)dt;1.3, in close agreement with
the theoretical value& ~Appendix A!. WhenXo5(x,y) or
~p,q! and the amplification matrix is given by Eq.~15!, Fig.
1~b! still shows the same behavior and where, in order
show slower convergence or actual divergence for larger
tervalsDt, one more curve, corresponding toN5450 ~curve
6!, is added. However, due to the position of curve 4 w
respect to curve 5~to its left!, Dto is closer to 250dt than to
300dt. An approximation to the value ofDto can be read

FIG. 1. The squared error~SQE! vs the number of inserting
cycle during the insertion ofx andq ~a! for different inserting time
intervalsDt fixed to 5dt ~curve 1!, 50dt ~curve 2!, 100dt ~curve 3!,
250dt ~curve 4!, and 300dt ~curve 5!, and whenx andy are inserted
~b! with the same inserting time intervals with one moreDt fixed to
450dt ~curve 6!. Note that curves 4 and 5 in panel~a! are hardly
distinguishable.
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PRE 60 433SYNCHRONIZATION IN CHAOTIC HAMILTONIA N . . .
from Fig. 2 which shows the variation of the spectral radiu
~i.e., convergence, or synchronization, rate! rn of An with Dt
when~x,q! @Fig. 1~a!# or ~y,p! are inserted indicating thatDto
is near 1.3. Notice, however, the existence of local minim
around the global minimum leading to the cluster of curv
obtained whenDt5(200– 300)dt ~Fig. 1!. More details on
the determination ofDto can be found in@11#, where a third-
order Taylor expansion of the resolvent was used.

III. APPLICATION
TO A SIMPLIFIED GEOPHYSICAL MODEL

A. Simplified primitive equations model

As pointed out in the Introduction, in numerical weathe
prediction only some, not all, meteorological variables a
observed. The combination of this subset of observatio
with the numerical model in a driving/response mann
makes the connection with synchronization straightforwar
This combination is generally based on the assumption t
the observations are compatible with the model. The atm
spheric system is modeled by nonlinear partial different
equations based on the momentum, energy, continuity, a
the state equations forming altogether the so-called primit
equations. When these equations are projected onto a sp
fied basis as in spectral methods, and a cutoff applied,
system becomes equivalent to a finite dynamical syst
where the previous analytical techniques can be applied.

As a simplified version of the primitive equations we con
sider a 1D nonlinear shallow-water model~SWM! over a
periodic domain with circumferencel, representing a latitu-
dinal circle around 45 °N. Roughly speaking, the gener
shallow-water equations are used to model the motion o

FIG. 2. The spectral radiusrn of An vs the inserting intervalDt
when the amplification matrixRuu

(n) is given by Eq.~16!, i.e., when
~x,q! are inserted. Notice the intervalDto around 1.3 beyond which
the convergence rate is no longer increasing withDt. The small
bursts are certainly due to the nonsmoothness of the spectral rad
Same driving trajectory as in Fig. 1.
s
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fluid with free upper boundary. These equations were sho
to provide a reasonable approximation to the circulation
the troposphere, the lower part of the atmosphere@15#, and
also to the dynamics of the upper ocean@16#. The 1D equa-
tions, written in Cartesian coordinates for anf plane, are the
following:

ut1uux1fx2 f v5nuxx1Fu ,

v t1uvx1 f u5nvxx1Fv , ~20!

f t1ufx1fux50,

whereu and v are the zonal and meridional winds, respe
tively, f5gh and is called the geopotential~g is the gravity
andh is the fluid height!, f is the Coriolis parameter,n is the
dissipation rate~viscosity!, andFu andFv are constant forc-
ing. Time and space derivatives are indicated by the s
scriptst andx, respectively. The first two equations represe
Newton’s second law of motion on a rotating frame wh
the last one is derived from the continuity equation combin
with the lower and free surface boundary conditions@17#.
Normally for our analysis, we consider the nondissipat
and unforced version of Eq.~20! which is nondimensional-
ized using T5 f 21 and L5103 km as units of time and
length, respectively~synoptic scales!, and to keep the wind
speed within the range of observed values in the troposp
u andv are nondimensionalized byU0520 ms21, andf by
F05104 m2 s22 corresponding to an internal mode. The no
dimensionalized unforced and nondissipative 1D shallo
water model reads

ut1Rouux1Fofx2v50,

v t1Rouvx1u50, ~21!

f t1Ro~ufx1fux!50,

where Ro5U0 /L f is the Rossby number, andFo
5F0 /U0L f . At midlatitude, w545 °N, Ro50.2, andFo
55. The energy equation derived from Eq.~21! can be writ-
ten as

]

]t FfS Ro

Fo
V21f D G1Ro

]

]x FfuS Ro

Fo
V21f D1uf2G50,

~22!

where V25u21v2, and the total energy E
5*domainf@(Ro /Fo)V21f#dx, is therefore conserved.

Sasaki @18# used a similar one-dimensionalf-plane
shallow-water model to study a problem of initialization u
ing a variational adjustment method of the field variables
order to have a best initial guess for prediction purposes.
one-dimensional model is restrictive as to dynamical proc
representation because all variables are uniform in they di-
rection and the zonal component of wind can represent o
ageostrophic inertio-gravity waves although the zonal c
rent should be largely geostrophic in reality. However, t
model is very useful, at least qualitatively, to address a
understand issues that may be difficult to address with m
complicated models.

us.
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434 PRE 60A. HANNACHI
Equation~21! is integrated using a Galerkin spectral tec
nique @19# with 30 modes. The stationary solutions of E
~21! (u50, v5Fofx) indicate that onlyv can exhibit geo-
strophic balance. The linear analysis of Eq.~21! around the
stationary solution (u5v50, f51) indicates the existenc
of three modes; a stationary one, in geostrophic balance,
two dispersive modes, one westward propagating and
eastward propagating, both representing pure inertia-gra
waves with period 2p(11k2RoFo)21/2 ~k is a wave num-
ber!. To integrate Eq.~21!, a fourth-order Runge-Kutta
scheme with~nondimensional! time stepdt51022 is used in
order to conserve the total energyE and the total geopoten
tial *f dx. Equation~21! can exhibit irregular~chaotic! be-
havior depending on the choice of the initial condition sim
lar to the simplified Hamiltonian system of Sec. II. Figures
and 4 show two examples of the model output. Figure
indicates the meridional windv as a function of time at grid
point 20 when the initial conditions areu0(x)5sin(6pxL/l),
v05cos(6pxL/l), andf051, while Fig. 4 shows the geopo
tential f at grid point 15 whenu05exp@2sin2(2pxL/l)#, v0
5cos(2pxL/l), and f051. Some of the behavior of th
model phase space is shown in Fig. 5. It seems that for
same run, the phase space trajectory appears to be quas
odic in some regions@Fig. 5~b!# and irregular in others@Fig.
5~c!#.

B. Synchronization in the shallow-water model

In order to obtain synchronization in the shallow-wa
model, Eq.~21! is integrated forward in time using a fourth
order Runge-Kutta scheme with~nondimensional! time step
dt51022 and with the same initial condition as in Fig.
The choice is made of this numerical scheme because it
vides a way to track the synchronization with high accura

FIG. 3. The meridional windv at grid point 20 as a function o
time when the initial conditions are given byu0(x)5sin(6pxL/l),
v0(x)5cos(6pxL/l), andf051. The numerical scheme is a fourth
order Runge-Kutta scheme with~nondimensional! time step dt
51022 ~corresponding to 1.7 min!.
-
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Other initial conditions for the control run have been us
but the results concerning the synchronization rate were
affected and we choose to concentrate on the initial condi
of Fig. 4 which produces an irregular trajectory of the ge
potential~Fig. 4!.

The control run is saved each time step. The model is t
rerun with the same time step and with initial conditio
taken from the end of the control run and eachDt5Ndt, for
different values ofN, we insert one~u, v, or f! or two ~u and
f, for example! model variables from the control run~driv-
ing system! in the role of the same variables of the new r
~driven system!. It should be noted that in practice there a
no instruments that observe only one component of the w
but only the wind speed while Doppler radars observe
radial wind component with respect to the instrument.

In Fig. 6 we show the squared error between the driv
~control run! and the driven systems at times whenu is in-
serted@Fig. 6~a!# and whenv is inserted@Fig. 6~b!# for dif-
ferent inserting time intervalsDt corresponding toN550,
100, 150, and 300. The errors are measured, for the
cases, at the same time

s5nDt5300ndt ~23!

~n is integer!, that is, every 300dt58.5 h. The curves in Fig.
6 are shown with time along thex axis so with largerN fewer
insertions have occurred. The decreasing errors in Fig. 6
dicate a faster convergence for largerDt<Dto whereDto is
around 150dt @Fig. 6~a!# and 130dt @Fig. 6~b!# after which
the synchronization~or convergence! rate decreases with fur
ther increase ofDt until eventual divergence where the sy
tems are no longer synchronized. The errors in Fig. 6 le
off at about 1027. The same behavior is observed but with
much smaller squared error when the mass fieldf and one
component~u or v) of the wind field are updated. Figure
shows this convergence rate whenu andf are updated. The

FIG. 4. The geopotentialf at grid point 15 whenu0(x)5exp
@2sin2(2pxL/l)#, v0(x)5cos(2pxL/l), and f051. Numerical
scheme and time step as in Fig. 3.
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FIG. 5. Zonal windu versus meridional windv at grid points 27 and 10, respectively~a!, geopotentialf versusu at the same grid point
10 ~b! showing, both a regular~quasiperiodic! model phase space behavior and,f at grid point 15 versus the same variable at grid point
indicating an irregular behavior~c!. Same trajectory as in Fig. 4.
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errors in this figure reach the machine accuracy where
driven system converged toward the driving system.

It is worth mentioning that since the total mass is co
served, the choice of the initial geopotential for the synch
nization is crucial. For example, when the wind~one com-
ponent or both! is inserted, the process cannot conver
without altering the mean of the computed geopotential
including a dissipation@20#. Normally, if the numerical
scheme is conservative~with no dissipation! there is no need
to do so each time, but we need only get the correct t
mass right at the start of the insertion experiment. Note
the previous reasoning does not apply to the energyE be-
cause this latter is a function of the whole set of model va
ables and there is no need for it to have the correct in
value. Note also that the systems do not synchronize w
only the mass field is inserted as pointed out in@10# although
e
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we noticed at the beginning of the insertion a decrease
SQE with Dt but the error levels off very quickly and be
comes constant. In this case the addition of a dissipatio
the model equations can make the process converge@20#.

In order to show more clearly the variation of the sy
chronization rate as a function of the inserting time inter
Dt during the process, we report in Fig. 8 a contour plot of
the logarithm of the squared error@ ln(SQE)#, when (u,f)
are inserted, as a function ofDt and the number of inserting
cyclesn ~i.e., as the inserting process progresses with tim!,
along with hyperbolae,nDt5s for different values ofs. In
this way there are two ways to track the convergence of
process as the inserting time intervalDt varies. One can
follow the synchronization as a function ofDt for a fixed
number of inserting cyclesn by following a horizontal line
@Eq. ~18!# or by following a fixed hyperbola correspondin
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to actual time@Eq. ~19!#, which is more interesting sinc
larger Dt inserts less data. Clearly, Fig. 8 shows again t
the synchronization rate increases withDt until Dto'4.2 h,
after which the process reverses.

A similar, but not identical, synchronization can be pe
formed by adopting two different numerical schemes for
driving and driven systems, respectively. This experim
allows for some ‘‘noise,’’ albeit small, to be included t
mimic real situations. We performed experiments where
control run is integrated with a fourth-order Runge-Ku
scheme while the updating run~driven system! is integrated
with a leapfrog scheme. Results from these experiments
shown in Fig. 9 where the zonal windu is inserted, as in Fig
6~a!, each 0.5, 1, 1.5, and 3 time units. As can be se

FIG. 6. The squared error vs time whenu is inserted~a! and
whenv is inserted~b! each 50dt ~curve 1!, 100dt ~curve 2!, 150dt
~curve 3!, and 300dt ~curve 4!. The errors are taken at the sam
time ~see text!. The driving trajectory is the same as in Fig. 4.
t
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results are quantitatively and qualitatively reproduced wh
compared to the case of ‘‘perfect’’ observations indicati
again synchronization in agreement with@5#. However, the
asymptotic value of the error is higher than the case of ‘‘p
fect’’ observations, shown, for example, in Fig. 6~a!, as
noted by@9#.

The results just presented are obtained for midlatitude
45 °N. It is, however, equally important to see the depe
dence of the optimal time interval with the position of thef
plane, i.e., the latitudinal circle, although in practice the u
dating interval is governed by the availability of observ

FIG. 7. Same as in Fig. 6 but when (u,f) are inserted. Units on
the x axis: 8.5 h.

FIG. 8. Logarithm of the squared error@ ln(SQE)# as a function
of the inserting time intervalDt and the number of inserting cycle
n when (u,f) are inserted~dashed lines! and the hyperbolaenDt
5s ~solid lines!. Driving trajectory as in Fig. 6.
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tions, but in the framework of the present context it is unde
our control. One reason behind this latitudinal dependence
that polar orbiting nadir sounders, satellites that measure m
teorological variables like temperature and wind profiles
along polar orbits, tend to sample the polar regions mor
frequently. Also, because most numerical models are spe
tral, the singularity at the poles implies that the density o
grid points increases as we move poleward. The variation o
the optimal inserting time interval with latitude is addressed
below and will be analyzed analytically in the next section.

To study the variation of the convergence rate of the syn
chronization with latitude, Fig. 10~a!, like Fig. 8, shows
ln(SQE) whenu and f are inserted as a function of the
inserting time intervalDt and the latitudew. The rate of
synchronization becomes faster asDt increases up to a cer-
tain value around 1.4 time units, indicated approximately b
the heavy dashed line, after which the rate reverses asDt
increases further. This observation holds especially aroun
the midlatitudes and slightly away from the equator and th
north pole. Since time is nondimensionalized byf 21

5(2V sinw)21, it follows that Dto is around
1.4(2V sinw)21. Whenv andf are inserted@Fig. 10~b!# the
structure of the curves is slightly more complicated than tha
of Fig. 10~a!, however, one notices that for smallDt ~mea-
sured in nondimensional time units!, the convergence rate is
independent of latitude. In particular, Fig. 10~b! shows that
Dto ~in nondimensional time units!, indicated by the heavy
dashed line, behaves like a hyperbola with latitude. Th
heavy solid line in Fig. 10~b! will be discussed in the ana-
lytical interpretation in Sec. VI.

IV. ANALYTICAL INTERPRETATION AND VARIATION
OF THE SYNCHRONIZATION RATE

WITH LATITUDE

In order to analyze the convergence rate of synchroniza
tion by periodic insertion and its variation with latitude,

FIG. 9. Same as in Fig. 6~a! but with a fourth-order Runge-
Kutta numerical scheme for the control run~driving system! and a
leapfrog for the updating run~driven system!. Units on thex axis as
in Fig. 7 ~8.5 h!.
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some simplifications have to be made since it is not poss
to use the full shallow-water model Eq.~21! in the manner of
the analysis presented in Sec. II. In order to achieve this
start by denoting byl 52dp cosw the circumference of the
circle at latitude w, d is the earth radius,a5 l /L, R
52pRo /a, and F52pFo /a. The model variables of Eq
~21! are expanded in Fourier series;

u5 (
m52`

`

um~ t !e2p imx/a ~24!

FIG. 10. Logarithm of the squared error@ ln(SQE)# as a function
of the inserting time intervalDt and the latitudew when (u,f) are
inserted~a! and when (v,f) are inserted~b!. The heavy dashed
lines in ~a! and ~b! show approximately the position ofDto as a
function of latitude@'1.4 time units in~a!# while the heavy solid
line in ~b! shows the theoretical value of Eq.~30! of Dto5&(1
20.023/sin2 2w). Driving trajectory as in Fig. 6.
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for the zonal windu and similarly for the meridional windv
and the geopotentialf. Obviously we haveu2m(t)5um* (t)
where the superscript~* ! denotes the complex conjugate. U
ing Eq.~24!, an infinite set of ordinary differential equation
can be derived from Eq.~21! which read

u̇k1 iR (
m1n5k

numun1 iFkfk2vk50,

v̇k1 iR (
m1n5k

numvn1uk50, ~25!

ḟk1 iR (
m1n5k

~m1n!umfn50

for k5...,22,21,0,1,2, . . . .
For our purpose these equations are to be simplified

considering only a few modes. The first two modes,u0 and
u1 , and similarly forv andf, are considered. If we denot
um5um

(1)1 ium
(2) , where the superscripts~1! and ~2! stand,

respectively, for the real and imaginary parts of the varia
(u0 is real! and remembering the fact thatu2m is the com-
plex conjugate ofum and similarly forv andf, we obtain the
following set of nine ordinary differential equations:

u̇05v0 ,

u̇1
~1!5Ru0u1

~2!1Ff1
~2!1v1

~1! ,

u̇1
~2!52Ru0u1

~1!2Ff1
~1!1v1

~2! ,

v̇052R~u1
~1!v1

~2!2u1
~2!v1

~1!!2u0 ,

v̇1
~1!5Ru0v1

~2!2u1
~1! , ~26!

v̇1
~2!52Ru0v1

~1!2u1
~2! ,

ḟ050,

ḟ1
~1!5R~f0u1

~2!1u0f1
~2!!,

ḟ1
~2!52R~f0u1

~1!1u0f1
~1!!.

Some remarks are worth mentioning before proceed
From Eq.~26!, without loss of generality we can setf0 to 1.
Equation~26! is still too complicated to be used in the ma
ner of the He´non and Heiles system presented in Sec. II, a
some further simplifications are needed. We notice, for
ample, that if we drop the nonlinear terms fromv̇0 , the
system becomes completely integrable and equivalent
linear system. Since we want a nonlinear system which
simple enough to be treated, we keep the nonlinear term
v̇0 . To get a minimum set of nonlinear equations, we ke
only one nonlinear equation foru and similarly for v by
dropping the nonlinear terms from the remainingu and v
tendency equations and keep unchanged the equationsf
tendency. After denoting (x1 ,x2 ,x3)5(u0 ,u1

(1) ,u1
(2)),

(y1 ,y2 ,y3)5(v0 ,v1
(1) ,v1

(2)), and (z2 ,z3)5(f1
(1) ,f1

(2)) and
making use of these simplifications, we derive the followi
eight-dimensional dynamical system:
y

e

g.

d
-

a
is
in
p

r

ẋ15y1 ,

ẋ25Rx1x31Fz31y2 ,

ẋ352Fz21y3 ,

ẏ152R~x2y32x3y2!2x1 ,
~27!

ẏ252x2 ,

ẏ352x3 ,

ż25R~x31x1z3!,

ż352R~x21x1z2!.

We are not merely concerned about transforming Eq.~27!
into a more compact form as in@21#, rather we would like to
keep the variables as they are so that their physical mea
remains clear for the purpose of analyzing the insertion p
cedure. The Jacobian of Eq.~27!, and the other terms which
come from theO(Dt3) resolvent expansion Eq.~10! are cal-
culated in Appendix B. It is clear from Appendix B tha
when u and f are inserted the spectral radiusrn of An , as
obtained from Eq.~10!, is

rn5U12
Dt2

2 Un

and is a decreasing function ofDt for 0<Dt<&. Since
time was nondimensionalized byf 21, we have the following
value for the optimum inserting time interval:

Dto5
&

2V sinw
. ~28!

Equation~28! is very close to the value found in the pre
ceding section around the midlatitudes when the full
shallow-water model Eq.~21! was used for synchronization
Of course, close to the equator, the equations have to
modified and ab-plane model would certainly be a bette
choice but it is not addressed here. Notice that we analy
the case when bothu andf are inserted together because
this case the number of the remaining variables, and also
dimension of the amplification matrix, are reduced. In ad
tion, because in this case the errors are small enough,
easier to follow the detailed behavior of the convergence
during synchronization.

When only one variable is inserted, the amplification m
trix is too complicated to be treated easily. Even when
insert v and f, the amplification matrix is not simple~for
example, triangular! as we may wish it to be, like the cas
whereu andf are inserted. This is due to the lack of sym
metry in the 1D shallow-water equations because the ad
tion is carried only by the zonal wind. In order to analy
this latter case, we are obliged to drop the nonlinear te
from ẋ2 and consider an approximation to the amplificati
matrix for this case, as indicated in Appendix B. The eige
values of the triangular matrix are (12Dt2/2) and @12(1
1RF)Dt2/2#, and its spectral radius therefore depends
the size ofDt. As pointed out in Appendix B, for a given
smallDt the spectral radiusrn ~or rate of synchronization! is
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u12Dt2/2un and is independent of latitude~nondimensional
Dt) as shown in Fig. 10~b!. However, for largerDt we have

rn5U12~11RF!
Dt2

2 Un

. ~29!

If we consider this latter expression, the value ofDto is
given by&(11RF)21/2. SinceRF is small compared to 1
the nondimensional intervalDto becomes approximatel
equal to~Appendix B!

Dto5&S 12
F0

2d2V2 sin2 2w D . ~30!

Considering the value ofF0 used in the text, Eq.~30! be-
comes

Dto'
&

2V sinw S 12
0.023

sin2 2w D ~31!

in dimensional time. The hyperbola Eq.~30! is shown in Fig.
10~b! by the heavy solid line. Although the experiment
curve ~heavy dashed line! is slightly shifted away from the
theoretical one, they look very similar, particularly arou
the midlatitudes where they would fit very well if they we
put on top of each other. This shift is certainly due to t
large simplifications applied to obtain Eq.~30! and a small
correction accounting for these simplifications can be ad
if we want a very accurate formula.

V. COMPARISON WITH THE LINEARIZED MODEL

The study presented in the previous sections is base
the full nonlinear 1D shallow-water model equations. T
natural question which then arises is how much we gai
we use the linearized model to explain the observed beha
y

t
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of the synchronization in the nonlinear system. As sho
below, the linearized model can explain this behavior if t
‘‘right’’ stationary state is chosen. It is certainly true that
far as chaotic synchronization is concerned linear models
not a good choice, nonetheless these models can be u
since during an updating procedure the nonlinear dynam
system is perturbed, therefore the linearized model ar
naturally.

We consider a linearized version of Eq.~21! about a state
of rest with the nondimensional geopotentialf51 which
reads

ut1Fofx2v50,

v t1u50, ~32!

f t1Roux50.

In terms of Fourier modes, we obtain for modek the linear
ordinary differential equation

V̂t5AV̂ , ~33!

whereV̂5(û,v̂,f̂)T whereû, v̂, andf̂ are the components
of u, v, andf, respectively, along the Fourier modek, and

A5S 0 1 ikF

21 0 0

ikR 0 0
D .

An initial error h~0! superimposed uponV̂ at time t50
will evolve afterDt as

h~Dt !5eADth~0!5R~Dt !h~0!, ~34!

where the propagatorR(t) is given by
R~ t !5S cosvt
sinvt

v

ikF

v
sinvt

2
sinvt

v
12

1

v2 ~12cosvt ! 2
ikF

v2 ~12cosvt !

ikR

v
sinvt

ikR

v2 ~12cosvt !
1

v2 1S 12
1

v2D cosvt

D . ~35!
are

ser-
-

r-
led

The
il-
In Eq. ~35! v is the inertio-gravity wave frequency given b
v2511k2RF. Equation~32! or Eq.~33! can also be written
in terms of vorticityz and divergenceD. It can be seen tha
the (z,D) version@10,20#, and Eq.~32!, have the same fre
quencies~eigenvalues! and only the off-diagonal elements o
their respective propagators are different. It is also wo
noting that the (z,D) version of the linearized Eqs.~32! is
not different from that of the 2D linearized equations. Th
point is important, in this regard, because it means that
sults from this section are also valid for the 2D shallo
water model which contains different dynamical time scal

In what follows and unless otherwise stated, we shall o
h

e-
-
.

y

discuss the cases when two model variables out of three
updated, i.e., perfectly known. The propagator Eq.~35!, as it
stands, does not explain the observed behavior of the in
tion procedure but for smallDt Taylor expansion of the re
solvent in Eq.~34! shows that the crossover point,Dto , from
the preceding section can be recovered~when we restrict
ourselves to smallk!. This shows that the observed conve
gence behavior in the nonlinear model is mainly control
by the first few modes, i.e., large scales.

In order to use the linear system, like Eq.~32!, for this
purpose a stationary state is required to linearize about.
choice of this state is important. In fact, consider the Ham
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tonian system of Sec. II, linearized about one singular po
along with the expansion of the exponential propagator.
examining Eqs.~14!–~16!, it turns out that if the singular
point is chosen to be (6)/2, 2 1

2, 0, 0! or ~0, 1, 0, 0!, then
clearly the linearized system cannot explain the converge
behavior in the nonlinear system. However, when the sin
lar point is chosen to be the origin then the linearized sys
can provide the right explanation of the previous behav
and gives correct estimates of the optimum time inter
Dto .

Due to the dynamical structure of the Hamiltonian syst
of Sec. II, the time average of the system trajectory is cl
to the origin @11#. The climatology of the shallow-wate
model~see Fig. 5! is also close to the stationary state used
obtain the linearized system in Eq.~32!. Hence, in order to
provide a robust explanation of the convergence beha
during the synchronization by direct insertion in more co
plicated geophysical systems, we conjecture that the bes
tionary states to be used for the linearization are those clo
to the climatology. These~quasi! stationary states are gene
ally referred to as weather or flow regimes@22#. In the atmo-
sphere such flow regimes have been observed and have
noticed to persist for several weeks@23#. The question of the
existence of~quasi! stationary states close to the climatolo
has been addressed theoretically using simple barotropic
ticity equation as well as atmospheric general circulat
models@24#.

These states play a crucial role in the predictability of
atmospheric flow and it should not be surprising to find t
the optimum inserting time interval can be linked to the
states and to the climatology. The importance of the clim
tology in this regard can be noted from Eqs.~A3! and~A4!,
in the Hamiltonian system, for example, relating the rate
convergence during the synchronization process to the m
state. In many instances, it is practical to just replace
stationary state by the climatology although it is not a~quasi!
stationary state. The climatology can be approximated by
time average of the model output over a long time per
although a rigorous analytic determination of it from t
model equations is generally hopeless@25#. Linearization of
the flow around the climatology has long been used in ot
contexts to study, for example, the stability of the mean fl
in order to provide explanations of the dynamical proces
responsible for the generation and maintenance of at
spheric variability@26#.

VI. SUMMARY AND CONCLUSION

We have investigated the rate, or speed, of synchron
tion by direct insertion as a function of the inserting tim
interval. The question has been first addressed theoretic
within a simplified Hamiltonian system. This choice h
been made for two basic reasons. First, the chosen syste
simple enough to be treated analytically but also complica
enough, due to its dynamical properties being similar to r
systems. Second and foremost, geophysical systems ar
sically Hamiltonian, especially when dissipation and forci
are weak. It is shown that up to a certain limitDto , that we
termed the optimum time interval, the synchronization r
increases as the inserting time interval increases. Beyond
optimum interval the synchronization rate decreases w
t,
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further increase of the inserting time interval until the pr
cess eventually diverges, i.e., the driving and driven syste
no longer synchronize.

This crossover point has been correctly predicted by
theory using a second-order Taylor expansion of the sys
resolvent. We then applied it to a simplified version of t
primitive equations, that is, a 1D nonlinear spectral shallo
water model over a periodic domain around 45 °N. We fi
that when the zonal wind is inserted, the optimum insert
time interval is around 4 h while it is slightly less when the
meridional wind is inserted. It is worth mentioning, althoug
this has not been explicitly addressed, that theO(Dt2) Tay-
lor expansion of the resolvent can also predict the upper li
of Dt where the procedure is likely to diverge. Although th
1D shallow-water model is restrictive, the analyzed behav
of the convergence rate of direct insertion still holds for mo
realistic models at least qualitatively. The fact that the mo
is dominated mainly by inertio-gravity modes is perhaps
reason why the optimum time interval is smaller than the
h period suggested in@7#.

We then focused on the variation of the synchronizat
rate and the optimum time interval with latitude within th
previous 1D shallow-water model Eq.~21!. This question
has been brought up because the temporal and spatial
lutions of several observing systems and of most numer
prediction models, respectively, are coarser equatorward
is found, in particular, that the optimum inserting time inte
val varies as the inverse of the Coriolis parameter, mean
that we should insert, or update, more frequently as we m
poleward. This rule is mostly valid around the midlatitud
where the inverse of the Coriolis parameter does not v
considerably.

A simplified low-order dynamical system is derived fro
the 1D shallow-water model by discarding some of the n
linear terms rather in the manner of@21#. This experiment
was aimed at building a simple nonlinear dynamical syst
to help put the experimental results in an analytical fram
work. An approximation to the optimum time intervalDto is
found to be&/(2V sinw) when (u,f) are inserted. A
slightly different formula is found when (v,f) are inserted,
and it is shown that these formulas fit quite well with th
experimental results drawn from the nonlinear shallow-wa
model.

In order to check whether the previous results can be
plained using a linear model, a linearized system deriv
from the shallow-water model is introduced and an analy
of the dependence of the synchronization on the inser
time interval performed. It turns out that the linearized mod
is able to explain the convergence behavior of the inser
procedure and allows estimation of the crossover pointDto
through the use of anO(Dt2) Taylor expansion of the resol
vent operator, which is simply an exponential matrix. This
promising because it is possible to use linear versions
more complicated nonlinear systems to calculate their pro
gators, which have simple forms, and then estimate
crossover point using a second-order Taylor expansion.
only point which needs to be addressed is the choice of
~quasi! stationary state about which to linearize the model
is suggested that the closest~quasi! stationary state to the
climatology, or for practical purposes, the climatology itse
can be used in this regard.
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Our results shed some light on the importance of the
serting time interval in synchronization. Several points, ho
ever, remain to be investigated. The main point is the ex
sion of these results to more realistic models like a
primitive equation model where several time scales
present. The question of dissipation has not been explic
addressed, however, experiments performed with the a
tion of dissipation show that the results found previously
quite robust to small dissipation and/or forcing@11#. The
same robustness is also observed when two different num
cal schemes~fourth-order Runge-Kutta or leapfrog! are used
for the driving ~control run! and the driven systems, respe
tively, or vice versa, to mimic real situations in which obse
vations are usually contaminated with noise although, in
presence of realistic noise level, other techniques like K
man filtering@27# or variational adjustment@28# can be used.
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APPENDIX A: ON THE LIMITING BEHAVIOR
OF THE SPECTRAL RADIUS

OF THE AMPLIFICATION MATRIX

We consider the amplification matrix given by Eq.~16!
obtained when~y,p! are inserted. In the meantime it shou
be noted that atO(Dt4), the situation corresponding to th
insertion of ~x,y! can be shown to be an application of th
simpler case corresponding to the insertion of~y,p! which is
presented below. In order to analyze the spectral radiusrn

5r(An), An5Pk51
n Ruu

(n2k11) , we analyze the two product
rn

6 appearing in Eq.~17!. For smallDt2 we have

ln rn
65 (

k51

n

2
Dt2

2
~162yk!1O~Dt4!

52n
Dt2

2
~162ȳn!1O~Dt4!, ~A1!
-
-
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e
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e
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-
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whereȳn5(1/n)(k51
n yk is an average of the variabley from

the trajectory. Forn large enough,ȳn is approximately equa
to the climateȳ of the variabley ~independent ofDt because
of the regular or stochastic character of the trajectories! so
that atO(Dt4) we have

ln rn;2n
Dt2

2
~122u ȳu!. ~A2!

We notice first that the variabley belongs to@21/2, 1# for the
bounded motion~i.e., boundedU! which guarantees the con
vergence ofȳn towardsȳ asn tends to infinity. It can also be
shown@11# that 122ȳ>0, implying thatu ȳu< 1

2 , as required
for convergence, i.e.,rn→0 when n→`. It is then clear
from Eq.~A2! that for largen, rn is a decreasing function o
~small! Dt for Dt<Dto . It also shows thatrn2

(D2t)

<rn1
(D1t) for n2<n1 for which n1D1t5n2D2t. Further-

more, Eq.~A2! tells us that the spectral radius behaves,
largen, to accuracyO(Dt4) as

rn;U12
Dt2

2
~122u ȳu!Un

. ~A3!

The optimal time interval is then defined as the one wh
minimizes the estimated spectral radius. Equation~A3! gives
an approximation to the optimal time intervalDto after
which rn increases withDt. We have

Dto5
&

A122u ȳu
;&~11u ȳu!, ~A4!

which is very close to& ( ȳ is generally very close to zero!.
Finally, we only note that it is also possible to derive fro
Eq. ~A3! an approximation to the lower bound onDt after
which the process may diverge@11#.

APPENDIX B:
ANALYSES FOR THE SHALLOW-WATER MODEL

We consider the simplified dynamical system Eq.~27!
whose JacobianF8 is given by
F8„X~ t !…51
0 0 0 1 0 0 0 0

Rx3 0 Rx1 0 1 0 0 F

0 0 0 0 0 1 2F 0

21 2Ry3 22Ry2 0 22Rx3 2Rx2 0 0

0 21 0 0 0 0 0 0

0 0 21 0 0 0 0 0

Rz3 0 R 0 0 0 0 Rx1

2Rz2 2R 0 0 0 0 2Rx1 0

2 . ~B1!

The operatorF82
„X(t)… is then given by
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21
1 22Ry3 2Ry2 0 2Rx3 22Rx2 0 0

RFz2 11RF 0 2Rx3 0 2Rx1 2RFx1 0

RFz3 0 11RF 0 0 0 0 RFx1

22R2x3y3 22Rx3 2R~x22Rx1y3! 1 22Ry3 2Ry2 22RFy2 22RFy3

Rx3 0 Rx1 0 1 0 0 F

0 0 0 0 0 1 2F 0

R2x1z2 R2x1 0 2Rz3 0 2R RF1R2x1
2 0

R2~x31x1z3! 0 2R2x1 Rz2 R 0 0 RF1R2x1
2

2 ~B2!

while Ḟ8„X(t)… can be derived simply by time differentiating the elements of the JacobianF8„X(t)…. TheO(Dt2) expression
of the resolvent is then obtained from Eq.~10! using Eqs.~B1! and~B2!. It can be seen from Eq.~B1! that when the zonal wind
and the geopotential (u,f) @that is, (x1 ,x2 ,x3 ,z2 ,z3)# are inserted, the amplification matrix given by Eq.~10! becomes

Ruu
~k!5S 12

Dt2

2
R„22x3~ tk!1Fz2~ tk!Dt…Dt R„2x2~ tk!1@Fz3~ tk!1Rx1~ tk!x3~ tk!#Dt…Dt

0 12
Dt2

2
0

0 0 12
Dt2

2

D . ~B3!

Equation~B3! shows that forDt,&, the convergence is faster for largerDt from which Eq.~28! is derived. The expression
of Ruu

(k) Eq. ~B3! can also provide an upper limit onDt above which convergence may cease.
When (v,f) are insertedRuu

(k) becomes

Ruu
~k!5S 12

Dt2

2
Ry3~ tk!Dt2 2Ry2~ tk!Dt2

R„x3~ tk!1@ 1
2 y3~ tk!2Fz2~ tk!#Dt…Dt 12~11RF!

Dt2

2
RS x1~ tk!1y1~ tk!

Dt

2 DDt

2RFz3~ tk!
Dt2

2
0 12~11RF!

Dt2

2

D . ~B4!
l
d
a

n-
el
ba

n

f
ly
all
The form of Eq.~B4! does not explicitly allow an analytica
study of the convergence as performed previously, an
would be helpful if we could get a similar expression to th
obtained when (u,f) is inserted. For this reason, the nonli
ear term fromẋ2 in Eq. ~27! is dropped, and, since the mod
variablesz2 ,z3 are small because they are wave pertur
tions toz051, the termsRFz2 andRFz3 are neglected from
Eq. ~B4! ~becauseR andF are also small!. With these large
simplifications we end up with the following amplificatio
matrix:

Ruu
~k!5S 12

Dt2

2
Ry3~ tk!Dt2 2Ry2~ tk!Dt2

0 12~11RF!
Dt2

2
0

0 0 12~11RF!
Dt2

2

D .

~B5!
it
t

-

This has similar structure to Eq.~B3! with similar eigenval-
ues except that a new term,RF, appears in the eigenvalues o
Eq. ~B5! due to the continuity equation which involves on
u. In Eq. ~B5! we have two eigenvalues, however, for sm
Dt, the spectral radiusrn is (12Dt2/2)n and then the con-
vergence rate is independent of the latitude for fixed~nondi-
mensional! Dt to accuracyO(Dt3). But for largerDt the
spectral radiusrn5u12(11RF)Dt2/2un, for which the op-
timum interval is

Dto5&~11RF!21/2'&~12 1
2 RF!, ~B6!

with RF5F0 /d2V2 sin2 2w. For the value ofF0 chosen in
the text, the preceding expression becomesDto'&(1
20.023/sin2 2w).
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