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Synchronization in chaotic Hamiltonian systems and a geophysical application
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This paper addresses the question of the rate of synchronization of two identical systems as a function of the
inserting time intervalAt between inserted variables of the driving system in the role of the same variables of
the driven system in a simplified Hamiltonian system and its application to a simplified geophysical model. We
start by analyzing the synchronization in a simplified two-degree Hamiltonian system. The synchronization rate
turns out to be a decreasing function of the inserting time inteitalip to a certain limitAt, where the
process reverses and the synchronization rate becomes slower as the inserting frequency decreases. The key
point of the analysis uses a second-order Taylor expansion of the system resolvent which indicates that
synchronization rate is basically of ord€(At?) for small At. The study is then extended to include a
simplified geophysical system. A nonlinear one-dimensional shallow-water model on a periodic domain meant
to represent a latitudinal circle around 45 °N is used. It is found that when the zonal wind is inserted, the
maximum synchronization rate is obtained when the inserting time interval is approximately 4 h. When the
meridional wind is inserted, it is obtained at slightly less than 4 h. It is shown, in particular, that the synchro-
nization rate depends on the latituler the Coriolis parametgr A low-order simplified dynamical system
derived from the one-dimensional shallow-water model is used to show that this optimum time idtgyval
when the zonal wind and the geopotential, for example, are inserted varies approximat2lg@sin ¢ to
accuracyO(At3). Analyses performed with a linear version of the shallow-water model reveal that this latter
can be used to explain the observed convergence behavior in the nonlinear model. The only point is the choice
of the stationary state for linearization purposes. It is then suggested that in more complicated geophysical
systems, the closest stationary state to the climatology can be used to estimate the crossouet, point
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[. INTRODUCTION rology, observed a partial synchronization between the two
hemispheres; the northern hemispheric flow regimes tend to
Synchronization is commonly observed in low-order cha-partially synchronize with those of the southern hemisphere.
otic and, to a lesser extent, in extended systems. Advances in As far as fluids and therefore meteorology are concerned,
computing power have also led to a better understanding dhe issue is of great importance. In fact, it is well known that
the behavior of these systems regarding synchronization. #he current meteorological and oceanographical observa-
familiar way to obtain synchronization is through coupling tional network has been much improved lately regarding the
of two (or more identical systems in a drive/response man-quality as well as the quantity of data. For example, sea
ner as performed ifl]. As pointed out in the next section, surface height data as measured by satellite are available
the same synchronization can be obtained by periodicallyvith a wide spatial and temporal cover at very high accuracy.
inserting (or updating one (or more system variables from Although this coverage is far from satisfactory in the sense
the driving trajectory(or control rur), obtained by running that only a limited number of independent atmospheric or
the model forward in time, into the role of the same variablesoceanic variables are observed, the subset of the observed
of the driven(or responsesystem that is integrated with a meteorological variables turns out to be very useful in pre-
different initial condition keeping the remaining system vari- dicting the future state of the ocean/atmosphere system using
ables unchanged. numerical weather prediction models in a way similar to that
Since its introduction in low-order chaotic systefds2], of synchronization.
synchronization has gone through a wide range of applica- Although the terminology is new in physics, the method
tion in physical sciences. While Pecora and Cartll for  has been applied in meteorology since the early 1970s and
example, introduced it in connection with low-order chaoticusually known as periodic updating—9]. For example,
models and applied it to an electronic chaotic circuit, othersCharney, Halem, and Jastrd®] applied an updating opera-
suggested its application to filtering, by deducing the state ofion using a simplified model of the atmosphere. They
a chaotic system from a limited sample of observati8ls  showed that, when the temperature of the driving system is
communicationg4], and system identificatiofb]. The sug- inserted in the role of the same variable of the driven system,
gestion regarding the application of synchronization to fluidshe greatest reduction of the error variance, defined as the
[2] plus its observed robustness in chaotic systems-vis-a Euclidean distance between the states of the two systems,
the presence of noige,5] constitute a good grounding for was achieved when the temperature is inserted every 12 h.
geophysical application, particularly in atmospheric sciencedhey pointed out that a more frequent insertion of these ther-
regarding, for example, prediction. Duaf®], who studied mal impulses seemed to give rise to inertio-gravity oscilla-
the phenomenon in connection with teleconnection in meteations which prevented the dissipative forces from adjusting
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the wind field to the temperature field. On the other hand, dXx

investigations from a simplified one-dimensioriaD) linear gt ~FX) (1)
shallow-water model indicate that the inserting interval

should be greater than the decay time of inertio-gravityand denote b)XT=(XZ,XI) where X, stands for the driv-
waves in order to avoid data redundar&y. Other investi- ing, or observed, variables hence subscoipivhile X, rep-
gators observed that the synchronization was achieved fastggsents the remaining or “unobserved” variables and the su-
for some larger inserting time interval40]. The inserting perscriptT stands for the transpose operator. Accordingly,
time interval and also the observation error along with conEqg. (1) can be split into two subsystems as

tributions from other sources can have a great impact on the

degradation of the synchronizati¢,6,9]. Xo=Fo(X),
The question of the rate of synchronization as a function _
of the updating(inserting frequency has been addressed in X,=Fu(X), 2

[11] using low-order chaotic systems. Here we investigate

the same question and its application to simplified geophyswhere F'=(Fg,F) is the corresponding split df. As in
ical models. More precisely, we address the question of houd.2l, the augmented system is

often to update, or insert, in order that the two systems get

synchronized as quickly as possible. We use for this purpose Xo=Fo(X),

a low-order chaotic Hamiltonian system as well as a simpli- .

fied geophysical model and perform a synchronization ex- Xu=Fy(X),

periment as i 1], namely, two identical systems in drive/ (©)
driven manner usingperiodig insertion of variables from Yo=Xo,

the driving signal in the role of the same variables of the )

driven system. Specifically, the dynamical model is first run Yy=Fu(Y),

o oy 1Y =(Y1 Y1) ana, reptesers e responing var
of gt bJ v t)i/,n The mod Ii7 then rerun with a differen bles. The integration of Eq3) gives therefore the same
periect observations. 1he modetis then reru a diferentasuit as the mentioned inserting procedure, obtained by run-

initial condition, to yield the driven system, and periodically ning Eq. (1) twice, when the insertion is performed every
updated with the same subset of variables taken from the - stepét. It is of course cheaper to run E€) than

driving trajectory, ignoring the correlation between observedrunmng Eq.(1) twice as far as synchronization with identical
and unobserved variables, until the driven trajectory eventusystems is concerned. However, for our purpose of inserting
ally converges toward the driving trajectory. Obviously, for yariables every time intervalt we need in fact to integrate
large systems the two runs can be performed simultaneouleq. (1) twice. The reason for this, as detailed below, can be

In Sec. Il, we provide theoretical and experimental analynderstood after writing Eq(1) in a discretized form, or as a
ses of the rate of synchronization as a function of the insertmap xi+1=f(X'). Now for a givenN=1 we write our new

ing time interval in a simple two-degree Hamiltonian system.cqypled system as
Experimental analysis is extended in Sec. Il to include a

simplified nonlinear 1D shallow-water model. Analytical x‘o+1:f0(xi),

analysis is then developed in Sec. IV by deriving a simplified

low-order dynamical system from the shallow-water model xiu“:fu(xi),

to confirm the experimental results of Sec. Ill. In Sec. V, a ()
comparison with analyses from a linear version of the Yo l= XU (21— &) (YD),
shallow-water model is performed. Summary and conclusion

are presented in the last section. Y =£,0YD),

where the functior; is given by
Il. SYNCHRONIZED CHAQOS
IN A SIMPLE HAMILTONIAN SYSTEM |1 if0=i (mod N)
, ) ) ' |0 otherwise.

A. Perturbation of dynamical systems by updating process

As pointed out earlier, a similar approach to synchroniza-The inserting procedure for eadhsteps is now straightfor-
tion by direct coupling between two identical systems agward from Eq.(4). HereN is meant to represent the length of
performed originally by[1,2] can be achieved through a di- the inserting time intervaht given in number of time steps,
rect insertion of a subset of variables from the driving systemi-e., At=Nét. Note also from Eq(4) that the usual coupling
in the role of the same variables in the driven system. In thi$EQ. (3)] [1,2] is obtained for the particular casé=1.
operation the model is run first and the trajectory saved each During the insertion procedure, and in the limit of small
time step. The same model is then rerun with different initialchanges, the trajectory of E{l) is being periodically dis-
condition, the chosen variables periodically inserted, and th&urbed. Since the driving/driven systems are identical, the
distance between the two system states computed. In fagthanges in the variabl¥ at the time of insertion are

consider a general autonomouasdimensional dynamical T T oot T
system OX'=(6X,,0X,)=(0,6X,). %)
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Now a small perturbatiodX, superimposed onto Eql) at  ces are not normal, convergence does occur in the numerical

time t=0 will evolve according to experiments when the necessary condition is satisfied.
doX B. Application to a simple Hamiltonian system
—qr —F X)X, (6) - PP P

Although Hamiltonian systems constitute a small subset

where F'(X(t))=(aF/dX)(X(t)) is the Jacobian of at of the conservative systems, they still hold a considerable

: D position among geophysicists’ topics. It is in fact known that
X(t). The solution to Eq(6) is given by geophysical(atmosphere plus ocensystems behave very

SX(t)=R(t,to) 5X(to) ) much like Hamiltonian systems, especially over short peri-
’ ’ ods or when dissipation and forcing are weak. In fact, a
whereR(t,t,) is the resolventor propagatorof Eg. (6). It Hamiltonian formulation of geophysical fluid dynamics can

can be easily verified that this latter satisfies the followingP® found in[13]. _ _ —
equations: For convenience and prior to using a simplified geophys-

ical model, we consider here the same system usédllih
namely, the Heon and Heiles two-degree Hamiltonian sys-

J
ER(t,to)zF’(X(t))R(t,tO), and R(t,t)=1,, Vt,tg tem[14] with potentialU and HamiltoniarH:
® U(xy) =30 +y?+2x%y—4y®)  and

wherel ,, is them-dimensional identity matrix. The propaga-
tor R(t,ty) cannot be explicitly computed for general, and
even simple, nonlinear systems. However, for smdll we
can use the Taylor expansion:

H=(+y?+p?+0%) +x%y - 5y°, (12

where(x,y) is the particle position andp(q)=(X,y) repre-
sents the velocity of the particle in the potential well The
equations of motion are given by

J
R(t0+ At,to):Im+AtER(t!tO)|t:to+‘ o

dX
— =T -VH=F(X), (13
At" 9" - dt
+FWR(t,to)|t:to+O(At ). (9) where
To accuracyO(At?), the previous expansion, along with Eq. o 1,
(8), boil down to Iz( | O)’
—12

R(t0+ At,to) = m+ AtF,(X(to))
2

whereO andl, are 2x2 TnuII and identity matrices, respec-

. tively, and X=(x,y,p,q)' and F(X)=(p,q,—X—2xy,—Yy

+ 5 [F'(X(to) + F'2(X(to))]+O(ALY). —x2+y?)T. Any system trajectory is confined to a constant
energy level given by the value 6f, and the behavior of the

(10 system phase space depends on this level where regularity is
observed at low levels while irregularity and chaotic behav-
ior are characteristics of high energy levgld,12.
For this system we have

In Eq. (10), t, is chosen arbitrarily as initial time but it can
be any timet, so that the coefficients akt and At? in the

right hand side of Eq.10) are functions of time, . The case

where these coefficients are time independent will be ad- o I,
dressed in Sec. V. According to E@), the propagatoR is F’(X(t))=( )
also split into four subpropagatoRy,,, Ry, Ryo, andRy,,. Az O
Using Eqgs.(5) and(7) we get the recurrence relationship;

and
Xy (t) = Ryu(tic, te—1) Xy (te—1). 11 A
—/ 12 —
The matrix R, (tx,tx_1) is referred to as the amplification FX)+FEXM) (BZ Az)’ (14
matrix hereafter. The two systems therefore synchronize, or
the sequence of Eq11) is said to be convergent, #X,(t) where
[or similarly 6X(t)] tends to zero whehtends to infinity for
all initial values of5X,. The process is then convergent, for [ —1-2y  —2X [—2a9 —2p
small  At,=t,—t, ;, i and only if A, 2=\ _ox  —142y) 3 BTl _on 54 )
=TI} _;Ruu(th—k+1,th—k) converges to the null matrix when
n goes to infinity. It is clear from Egs.(14) and (10) that when the position

If p,=p(A,) denotes the spectral radius Af,, then a  variables(x,y) or the momentum variablgg,q) are inserted
necessary conditiofand in general sufficient only for nor- (in the driven system the coefficient ofAt in R, is null.
mal matricegfor the process to converge is that—~0 when  This is true for all Hamiltonian systems deriving from a po-
n—oo. Note also that while, in general, the resolvent matri-tential, i.e., both the amplification matri®,, and the syn-
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chronization rate ar®(At?) for smallAt. For this case, the 12°
amplification matrixR{) =R, (t,,ty_1) is o

19!
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Appendix A shows that for smalkt, p, goes to zero as 1243
goes to infinity and thap,(At) is a decreasing function of 107

At for At<v2, i.e., 10715
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whereA;t and A,t are two insertingupdating time inter- e
vals. It is also showr(Appendix A that for two different Inserting Cycle
inserting cycles,<n; for whichn;A;t=n,A,t=¢, thatis,
the (n,,A,t) cycle inserts less data than,(At), we still FIG. 1. The squared errdiSQB vs the number of inserting
have cycle during the insertion of andq (a) for different inserting time
intervalsAt fixed to 56t (curve 1), 506t (curve 2, 1005t (curve 3,
pnz(Azt) $pnl(A1t), (19 2506t (curve 4, and 30@t (curve 5, and wherx andy are inserted
(b) with the same inserting time intervals with one marefixed to
As an application a driving trajectory is obtained by nu-450t (curve 6. Note that curves 4 and 5 in pan@) are hardly
merically integrating Eq(1) forward in time using a fourth-  distinguishable.
order Runge-Kutta scheme in order to conserve the ertérgy
with time stepst="5x10"3. Any trajectory is defined by its that the synchronizatiofor convergenceis faster for larger
initial condition, (Xq,Yo,00), for example, and its energy At up to a maximum valuét,. Note, however, from Fig.
level H which determines the remaining variable. The insert-1(a) that curves 4 and 5 are hardly distinguishable. This im-
ing time interval is taken to be a multiple of the time step,plies thatAt,~(200-300pt~ 1.3, in close agreement with
i.e., At=Ngt. As a measure of synchronization we choosethe theoretical value2 (Appendix A. WhenX,=(x,y) or
the squared errdiSQB), i.e., the squared Euclidean distance, (p,0) and the amplification matrix is given by E@L5), Fig.
between the states of the twdriving and driven systems. 1(b) still shows the same behavior and where, in order to
In Fig. 1 we display the squared error as a function of timeshow slower convergence or actual divergence for larger in-
for different values ofN when(x,0) [Fig. 1(a)] and(x,y) [Fig. ~ tervalsAt, one more curve, correspondingNe=450 (curve
1(b)] are inserted. The driving trajectory used in Fig. 1 is6), is added. However, due to the position of curve 4 with
defined by &q,Y0,00)=(0,0.1,0.2) aH=0.165 and corre- respect to curve &o its lef), At, is closer to 256t than to
sponds to a chaotic trajectofiL1]. Figure 1 shows clearly 3006t. An approximation to the value akt, can be read

il veind 1o 1

o
)
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fluid with free upper boundary. These equations were shown
to provide a reasonable approximation to the circulation of
the troposphere, the lower part of the atmosphéfsd, and
also to the dynamics of the upper ocddl]. The 1D equa-
tions, written in Cartesian coordinates for faplane, are the
following:

S
o
T

Uit uu+ ¢y—fo=wvu,, +F,,

vituvy,tfu=wvo,t+F,, (20

4

=
(

¢+ udy+ pu,=0,

Spectral Radius

s

t

w
T T T

whereu andv are the zonal and meridional winds, respec-
tively, #=gh and is called the geopotentig is the gravity
andh is the fluid heighk, f is the Coriolis parametey; is the
dissipation ratdviscosity), andF, andF, are constant forc-
ing. Time and space derivatives are indicated by the sub-
I N R scriptst andx, respectively. The first two equations represent
0 02 04 06 08 10 12 14 16 Newton's second law of motion on a rotating frame while

Inserting Time Interval (time units) the last one is derived from the continuity equation combined

. ) o with the lower and free surface boundary conditigag].

FIG. 2. The spectral radiys, of A, vs the inserting intervaht  Normally for our analysis, we consider the nondissipative
when the amplification matriR(y) is given by Eq.(16), i.e., when  ang ynforced version of Eq20) which is nondimensional-
(x,0) are inserted. Notice the interval, around 1.3 beyond which ized usingTzf‘l and L=1Ckm as units of time and
the convergence rate is no longer increasing wAth The small length, respectivelysynoptic scales and to keep the wind
bursts are certainly due to the nonsmoothness of the spectral radiug, - §'\yithin the range of observed values in the troposphere
Same driving trajectory as in Fig. 1. u andv are nondimensionalized Hy,=20ms %, and ¢ by

, , o . ®y=10"m?s 2 corresponding to an internal mode. The non-
from Fig. 2 which shows the variation of the spectral radiusyimensionalized unforced and nondissipative 1D shallow-
(i.e., convergence, or synchronization, jgig of A, with At \y~iar model reads
when(x,0) [Fig. 1(@] or (y,p) are inserted indicating thait,

il o]

1976

TR T T 77Ty

1977

JRATII SR AT

is near 1.3. Notice, however, the existence of local minima U+ Rouu, + F oy —v =0,
around the global minimum leading to the cluster of curves
obtained whem\t=(200-300)t (Fig. 1). More details on FR.UD.+U=0 21
the determination oAt, can be found if11], where a third- Ut Rotlx ' @Y
order Taylor expansion of the resolvent was used.
yiorexp i+ Ro(Ugsy ) =0,
Il. APPLICATION where R,=Uy/Lf is the Rossby number, and,
TO A SIMPLIFIED GEOPHYSICAL MODEL =Po/UopLf. At midlatitude, ¢=45°N, R,=0.2, andF,
o o _ =5. The energy equation derived from Eg1) can be writ-
A. Simplified primitive equations model ten as

As pointed out in the Introduction, in numerical weather
prediction only some, not all, meteorological variables are ¢ Ro. » J
observed. The combination of this subset of observations | ® F_OV +é 99X
with the numerical model in a driving/response manner (22
makes the connection with synchronization straightforward.
This combination is generally based on the assumption thathere V?=u’+v2, and the total energy E
the observations are compatible with the model. The atmo= [ gomai?[ (Ro/Fo)V2+ ¢]dx, is therefore conserved.
spheric system is modeled by nonlinear partial differential Sasaki [18] used a similar one-dimensiondtplane
equations based on the momentum, energy, continuity, anghallow-water model to study a problem of initialization us-
the state equations forming altogether the so-called primitivéng a variational adjustment method of the field variables in
equations. When these equations are projected onto a speckder to have a best initial guess for prediction purposes. The
fied basis as in spectral methods, and a cutoff applied, thene-dimensional model is restrictive as to dynamical process
system becomes equivalent to a finite dynamical systemepresentation because all variables are uniform inytbe
where the previous analytical techniques can be applied. rection and the zonal component of wind can represent only

As a simplified version of the primitive equations we con- ageostrophic inertio-gravity waves although the zonal cur-
sider a 1D nonlinear shallow-water mod&@WM) over a  rent should be largely geostrophic in reality. However, the
periodic domain with circumferende representing a latitu- model is very useful, at least qualitatively, to address and
dinal circle around 45°N. Roughly speaking, the generalnderstand issues that may be difficult to address with more
shallow-water equations are used to model the motion of @aomplicated models.

+R ¢u<&v2+ ¢>> +u¢2} =0
Fo ’
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FIG. 3. The meridional wind at grid point 20 as a function of FIG. 4. The geopotentiap at grid point 15 wheruy(x) =exp
time when the initial conditions are given luy(x) = sin(6mxLI), [—sirf(2mxU/1)], vo(x)=cos(2mxL/l), and ¢o=1. Numerical
vo(x) =cos(6mxU/I), and o= 1. The numerical scheme is a fourth- scheme and time step as in Fig. 3.
order Runge-Kutta scheme witthondimensional time step 6t

_ — 2 H e . .
=107 (corresponding to 1.7 mjn Other initial conditions for the control run have been used

but the results concerning the synchronization rate were un-

Equation(21) is integrated using a Galerkin spectral tech-affected and we choose to concentrate on the initial condition
nique [19] with 30 modes. The stationary solutions of Eq. of Fig. 4 which produces an irregular trajectory of the geo-
(21) (u=0, v=F,¢,) indicate that onlyy can exhibit geo- potential(Fig. 4).
strophic balance. The linear analysis of E21) around the The control run is saved each time step. The model is then
stationary solution {=v=0, ¢=1) indicates the existence rerun with the same time step and with initial conditions
of three modes; a stationary one, in geostrophic balance, artedken from the end of the control run and eddh= Nét, for
two dispersive modes, one westward propagating and ondifferent values oN, we insert onéu, v, or ¢) or two (u and
eastward propagating, both representing pure inertia-gravity, for examplé model variables from the control ruilriv-
waves with period 2(1+k?R,F,) Y2 (k is a wave num- ing system in the role of the same variables of the new run
ben. To integrate Eq.(21), a fourth-order Runge-Kutta (driven system It should be noted that in practice there are
scheme withnondimensionaltime stepst=10"2 is used in  no instruments that observe only one component of the wind,
order to conserve the total enerfyand the total geopoten- but only the wind speed while Doppler radars observe the
tial f ¢ dx. Equation(21) can exhibit irregulafchaotig be-  radial wind component with respect to the instrument.
havior depending on the choice of the initial condition simi- In Fig. 6 we show the squared error between the driving
lar to the simplified Hamiltonian system of Sec. II. Figures 3(control rur) and the driven systems at times wheris in-
and 4 show two examples of the model output. Figure 3serted[Fig. 6(@)] and wherv is inserted Fig. 6(b)] for dif-
indicates the meridional wind as a function of time at grid ferent inserting time intervaldt corresponding tdN=>50,
point 20 when the initial conditions ang(x) = sin(6mxUI), 100, 150, and 300. The errors are measured, for the four
vo=cos(6mx/I), and ¢y=1, while Fig. 4 shows the geopo- cases, at the same time
tential ¢ at grid point 15 wheruy=exd —sir?(2mxU1)], v,
=cos(2mxUl), and ¢o=1. Some of the behavior of the o=nAt=30Mt (23)
model phase space is shown in Fig. 5. It seems that for the
same run, the phase space trajectory appears to be quasipéns integej, that is, every 308t=8.5h. The curves in Fig.
odic in some regionpFig. 5b)] and irregular in otherfFig. 6 are shown with time along theaxis so with largeN fewer
5(c)]. insertions have occurred. The decreasing errors in Fig. 6 in-
dicate a faster convergence for larger<At, whereAt, is
around 150t [Fig. 6(a)] and 13t [Fig. 6(b)] after which
the synchronizatioor convergencerate decreases with fur-

In order to obtain synchronization in the shallow-waterther increase oAt until eventual divergence where the sys-
model, Eq.(21) is integrated forward in time using a fourth- tems are no longer synchronized. The errors in Fig. 6 level
order Runge-Kutta scheme withondimensionaltime step  off at about 10’. The same behavior is observed but with a
8t=10"2 and with the same initial condition as in Fig. 4. much smaller squared error when the mass figldnd one
The choice is made of this numerical scheme because it praomponent(u or v) of the wind field are updated. Figure 7
vides a way to track the synchronization with high accuracyshows this convergence rate whemand ¢ are updated. The

B. Synchronization in the shallow-water model
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FIG. 5. Zonal windu versus meridional wind at grid points 27 and 10, respectively), geopotentiakp versusu at the same grid point
10 (b) showing, both a reguldiguasiperiodit model phase space behavior agdat grid point 15 versus the same variable at grid point 10
indicating an irregular behavidc). Same trajectory as in Fig. 4.

errors in this figure reach the machine accuracy where theve noticed at the beginning of the insertion a decrease of
driven system converged toward the driving system. SQE with At but the error levels off very quickly and be-

It is worth mentioning that since the total mass is con-comes constant. In this case the addition of a dissipation in
served, the choice of the initial geopotential for the synchrothe model equations can make the process conj@@je
nization is crucial. For example, when the wit@he com- In order to show more clearly the variation of the syn-
ponent or both is inserted, the process cannot convergechronization rate as a function of the inserting time interval
without altering the mean of the computed geopotential oAt during the process, we report in Fi§ a contour plot of
including a dissipation[20]. Normally, if the numerical the logarithm of the squared errpin(SQE)], when u, ¢)
scheme is conservatiith no dissipationthere is no need are inserted, as a function aft and the number of inserting
to do so each time, but we need only get the correct totatyclesn (i.e., as the inserting process progresses with)time
mass right at the start of the insertion experiment. Note thaalong with hyperbolaenAt= o for different values of. In
the previous reasoning does not apply to the en&idye-  this way there are two ways to track the convergence of the
cause this latter is a function of the whole set of model variprocess as the inserting time intervat varies. One can
ables and there is no need for it to have the correct initiafollow the synchronization as a function aft for a fixed
value. Note also that the systems do not synchronize whenumber of inserting cycles by following a horizontal line
only the mass field is inserted as pointed outlifi] although  [Eq. (18)] or by following a fixed hyperbola corresponding
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e results are quantitatively and qualitatively reproduced when
] compared to the case of “perfect” observations indicating
09 L 4 again synchronization in agreement wjth]. However, the
E asymptotic value of the error is higher than the case of “per-
5 1 fect” observations, shown, for example, in Fig(ag as
5 w0 g 3 noted by[9]. . . o
< f ] The results just presented are obtained for midlatitudes at
%10'2-— ] 45°N. It is, however, equally important to see the depen-
2 dence of the optimal time interval with the position of the
o ] plane, i.e., the latitudinal circle, although in practice the up-
1073 € dating interval is governed by the availability of observa-
- 18
e 3
19-5 I | 1 1
8 19 1M
Time (d)
. _ S
FIG. 6. The squared error vs time whenis inserted(a) and e
whenv is insertedb) each 5@t (curve 1), 1006t (curve 2, 1505t S,
(curve 3, and 30@t (curve 4. The errors are taken at the same ©
time (see text The driving trajectory is the same as in Fig. 4. %D 8
-+
-
. . . . . . [
to actual time[Eqg. (19)], which is more interesting since 3

larger At inserts less data. Clearly, Fig. 8 shows again that
the synchronization rate increases wih until At,~4.2h,
after which the process reverses.

A similar, but not identical, synchronization can be per-
formed by adopting two different numerical schemes for the
driving and driven systems, respectively. This experiment
allows for some “noise,” albeit small, to be included to
mimic real situations. We performed experiments where the
control run is integrated with a fourth-order Runge-Kutta
scheme while the updating rudriven systemis integrated

4.2 8.4
Inserting Time Interval (h)

FIG. 8. Logarithm of the squared errfdn(SQE)] as a function

with a leapfrog scheme. Results from these experiments aist the inserting time intervaht and the number of inserting cycles

shown in Fig. 9 where the zonal windis inserted, as in Fig.

n when (U, ¢) are inserteddashed linesand the hyperbolaaAt

6(a), each 0.5, 1, 1.5, and 3 time units. As can be seens ¢ (solid lines. Driving trajectory as in Fig. 6.
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that polar orbiting nadir sounders, satellites that measure me § Iz ”5,'11 1S m.‘,\,ii AR
teorological variables like temperature and wind profiles = asn ll 'S" ! 'S I HERIE | ' 1
along polar orbits, tend to sample the polar regions more § ! ! : Il ;I || 'l |“|||||| l) , ; |
frequently. Also, because most numerical models are spec it Hl’! o :l/,//////,/‘//r iy 1
tral, the singularity at the poles implies that the density of “ i 1k ('I |||” ,‘i/'/"///'ﬁ///g il
grid points increases as we move poleward. The variation o 1 /! I /! I 3 ’ll S 4 //'/’/'/"//’7“/'//‘#’/ S H
the optimal inserting time interval with latitude is addressed _’/ // I ¥ [ b,)l//f//// 7'/;'/«/«/, i J 2 4_
below and will be analyzed analytically in the next section. / K llillhl//// 77 a
To study the variation of the convergence rate of the syn- ’ ’ [ XX, o/ _
chronization with latitude, Fig. 1@), like Fig. 8, shows '0' | 'N' ,{%4_‘,/'_” vl
IN(SQE) whenu and ¢ are inserted as a function of the 10N LWL L VMl . .
inserting time intervalAt and the latitudep. The rate of 0 1.5 3
synchronization becomes faster &t increases up to a cer- Inserting Time Interval (nondimensional units)

tain value around 1.4 time units, indicated approximately by

the heaVy dashed ”ne after which the rate reverseAtas FIG. 10. Loganthm of the Squared err[dn(SQE)] as a function
|ncreases further Th|S Observatlon h0|dS eSpeCIally aroungf the msertmg time intervalt and the |at|tudep when (u ¢) are
the m|d|at|tudes and Sl|ght|y aWay from the equator and thenserted(a) and when Q ¢) are |nsertedb) The heavy dashed
north pole. Since time is nondimensionalized Hy* lines in (a) and (b) show approximately the position dft, as a
=(2Qsing)™, it follows that At, is around function of latitude[~1.4 time units in(@)] while the heavy solid
1.4(20 sing) 1. Whenv and ¢ are insertedFig. 10b)] the Jine in (b) shows the theoretical value of E0) of At,=v2(1
structure of the curves is slightly more complicated than that- 0.023/sif 2¢). Driving trajectory as in Fig. 6.

of Fig. 10@), however, one notices that for smalt (mea-
sured in nondimensional time unitthe convergence rate is e . - .
independent of latitude. In particular, Fig. (bD shows that some simplifications have to be made since it is not possible
At,, (in nondimensional time unitsindicated by the heavy t© use the full shallow-water model EQ1) in the manner of
dashed line, behaves like a hyperbola with latitude. Théhe analysis p_resented in Sec. Il. In o_rder to achieve this we
heavy solid line in Fig. 1M) will be discussed in the ana- Start by denoting by=2d cose the circumference of the

|ytica| interpretation in Sec. VI. circle at latitude @, d is the earth I‘adiUS,a=|/L, R
=2mwR,/a, andF=2=wF,/a. The model variables of Eq.
IV. ANALYTICAL INTERPRETATION AND VARIATION (21) are expanded in Fourier series;

OF THE SYNCHRONIZATION RATE
WITH LATITUDE

In order to analyze the convergence rate of synchroniza- u= > u,(t)edmmva (24)
tion by periodic insertion and its variation with latitude, m=—o
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for the zonal windu and similarly for the meridional wind X1=Y1,

and the geopotentiap. Obviously we haveu_,(t) =up (t)

where the superscrigt) denotes the complex conjugate. Us- Xo=RX;Xz+Fz3+Ys,
ing Eq.(24), an infinite set of ordinary differential equations

can be derived from Ed21) which read X3=—Fzy+ys,

V1=2R(X,y3—X —Xq,
iR D) NUpUy+iFkey—v, =0, Y1=2R0xYs ™ Xa¥2) =X
m+n=k (27)

YZ: _XZ!
O HIR D NUmn+ =0, (25) Ya= —Xa,
m+n=Kk

Z,=R(X3+X123),

b +iR m+n)Uupmé,=0
¢k mJ;:k( ) md)n 23:_R(X2+X122).

fork=...,—2,-1,0,1,2.... We are not merely concerned about transforming(E@).

For our purpose these equations are to be simplified bjnto a more compact form as [21], rather we would like to
considering only a few modes. The first two modes,and  keep the variables as they are so that their physical meaning
u,, and similarly forv and ¢, are considered. If we denote remains clear for the purpose of analyzing the insertion pro-
un=ubP+iu®  where the superscriptd) and (2) stand, cedure. The Jacobian of E@7), and the other terms which
respectively, for the real and imaginary parts of the variablecome from theD(At3) resolvent expansion E¢L0) are cal-

(up is rea) and remembering the fact that ,, is the com-  culated in Appendix B. It is clear from Appendix B that
plex conjugate ofi,, and similarly forv and¢, we obtain the whenu and ¢ are inserted the spectral radipg of A, as
following set of nine ordinary differential equations: obtained from Eq(10), is

n

At?

Uozvo,
T

U= Rupuy” +F ¢+ v,

and is a decreasing function dft for 0O<At<v2. Since

0?=-RuuV—FeP+0v?, time was nondimensionalized ty 1, we have the following
value for the optimum inserting time interval:

bo=2R(UMp P — U@ (M) — o,

v2
v V=Rupw@-uV, (26) A=3q sing (28)
b(12)= — Rug (11)_ u(12> , Equation(28) is very close to the_ value found in the pre-
ceding section around the midlatitudes when the full 1D
o shallow-water model Eq21) was used for synchronization.
$0=0, Of course, close to the equator, the equations have to be
1) @ @ modified and aB-plane model would certainly be a better
¢17=R(dous™ +Ugh1™), choice but it is not addressed here. Notice that we analyzed
) the case when both and ¢ are inserted together because in
?=—R(gou" +ugepiM). this case the number of the remaining variables, and also the

o _dimension of the amplification matrix, are reduced. In addi-

Some remarks are worth mentioning before proceedingjon, pecause in this case the errors are small enough, it is
From Eq.(26), without loss of generality we can s¢p to 1. easier to follow the detailed behavior of the convergence rate
Equation(2(§) is still too complicated to be used in the man- during synchronization.
ner of the Haon and Heiles system presented in Sec. Il, and \when only one variable is inserted, the amplification ma-
some further simplifications are needed. We notice, for eXtix is too complicated to be treated easily. Even when we
ample, that if we drop the nonlinear terms fromg, the  inserty and ¢, the amplification matrix is not simplé&or
system becomes completely integrable and equivalent to @ample, triangularas we may wish it to be, like the case
linear system. Since we want a nonlinear system which isyhereu and ¢ are inserted. This is due to the lack of sym-
simple enough to be treated, we keep the nonlinear terms ifhetry in the 1D shallow-water equations because the advec-
vo. To get a minimum set of nonlinear equations, we keegjon is carried only by the zonal wind. In order to analyze
only one nonlinear equation far and similarly forv by  this latter case, we are obliged to drop the nonlinear terms
dropping the nonlinear terms from the remainingandv  from %, and consider an approximation to the amplification
tendency equations and keep unchanged the equatiors formatrix for this case, as indicated in Appendix B. The eigen-
tendency. After denoting Xg,Xz,x3)=(uo,uf” ,u®),  values of the triangular matrix are {1At%/2) and[1—(1
(Y1.Y2.Y3)=(vo, 0" ,01?), and @,,z3)= (4", ¢{?) and  +RF)At2/2], and its spectral radius therefore depends on
making use of these simplifications, we derive the followingthe size ofAt. As pointed out in Appendix B, for a given
eight-dimensional dynamical system: smallAt the spectral radiug,, (or rate of synchronizatioris
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|1—At?/2|" and is independent of latitud@ondimensional of the synchronization in the nonlinear system. As shown
At) as shown in Fig. 1®). However, for largeiAt we have  below, the linearized model can explain this behavior if the
“right” stationary state is chosen. It is certainly true that as
far as chaotic synchronization is concerned linear models are
not a good choice, nonetheless these models can be useful
since during an updating procedure the nonlinear dynamical
If we consider this latter expression, the value Xf, is  system is perturbed, therefore the linearized model arises
given byv2(1+RF) Y2 SinceRF is small compared to 1, naturally.

the nondimensional intervalit, becomes approximately  We consider a linearized version of H§1) about a state

n

. (29

At?
Pn= l—(1+ RF)T

equal to(Appendix B of rest with the nondimensional geopotentiak=1 which
reads
At,=v2|1— o (30)
° 2d207sirt 2¢) Ui+ Fody—v=0,
Considering the value ob used in the text, Eq30) be- v+u=0, (32
comes
¢+ Ru,=0.
Vi 0.023 .
At~ 2Q sing 1- Sir? 26 (31 In t_erms o_f Fourigr mode;, we obtain for moki¢he linear
ordinary differential equation
in dimensional time. The hyperbola E®0) is shown in Fig. N .
10(b) by the heavy solid line. Although the experimental Vi=AV, (33

curve (heavy dashed lineis slightly shifted away from the . . .
theoretical one, they look very similar, particularly aroundwhereV=(0,0,#)" whered, i, and¢ are the components
the midlatitudes where they would fit very well if they were of U, v, and ¢, respectively, along the Fourier mo#éeand

put on top of each other. This shift is certainly due to the

large simplifications applied to obtain E(BO) and a small 0 1 ikF
correction accounting for these simplifications can be added A=| -1 0 O
if we want a very accurate formula. ikR 0 O
V. COMPARISON WITH THE LINEARIZED MODEL An initial error 7(0) superimposed upoN at timet=0

The study presented in the previous sections is based OVH'” evolve afterAt as

the full nonlinear 1D shallow-water model equations. The P(At)=e*>0)=R(At) (0), (34)
natural question which then arises is how much we gain if
we use the linearized model to explain the observed behaviawhere the propagatd®(t) is given by

sinwt ikF
coswt —Sinwt
w w
sinwt 1 ikF
Rit)=| - 1- F(l—COSwt) - ?(1—C03wt) . (35
ikR

1 1
—sinwt 1- t +|1— t
- Sinw ;2—( coswt) P 52) COSw

In Eqg. (35 w is the inertio-gravity wave frequency given by discuss the cases when two model variables out of three are

w?=1+k?RF. Equation(32) or Eq.(33) can also be written updated, i.e., perfectly known. The propagator &%), as it

in terms of vorticity/ and divergenc®. It can be seen that stands, does not explain the observed behavior of the inser-

the (¢,D) version[10,20, and Eq.(32), have the same fre- tion procedure but for smalkit Taylor expansion of the re-

guenciegeigenvaluesand only the off-diagonal elements of solvent in Eq(34) shows that the crossover poidtt,, from

their respective propagators are different. It is also worththe preceding section can be recovefathen we restrict

noting that the {,D) version of the linearized Eq$32) is  ourselves to smak). This shows that the observed conver-

not different from that of the 2D linearized equations. Thisgence behavior in the nonlinear model is mainly controlled

point is important, in this regard, because it means that reby the first few modes, i.e., large scales.

sults from this section are also valid for the 2D shallow- In order to use the linear system, like E82), for this

water model which contains different dynamical time scalespurpose a stationary state is required to linearize about. The
In what follows and unless otherwise stated, we shall onlychoice of this state is important. In fact, consider the Hamil-
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tonian system of Sec. Il, linearized about one singular pointfurther increase of the inserting time interval until the pro-
along with the expansion of the exponential propagator. Bycess eventually diverges, i.e., the driving and driven systems
examining Eqgs.(14)—(16), it turns out that if the singular no longer synchronize.
point is chosen to be*v3/2, -3, 0, 0 or (0, 1, 0, 0, then This crossover point has been correctly predicted by the
clearly the linearized system cannot explain the convergencgeory using a second-order Taylor expansion of the system
behavior in the nonlinear system. However, when the singuresolvent. We then applied it to a simplified version of the
lar point is chosen to be the origin then the linearized systemyrimitive equations, that is, a 1D nonlinear spectral shallow-
can provide the right explanation of the previous behaviokyater model over a periodic domain around 45 °N. We find
and gives correct estimates of the optimum time intervaknat when the zonal wind is inserted, the optimum inserting
At,. ) o time interval is aroud 4 h while it is slightly less when the
Due to the dynamical structure of the Hamiltonian systemyerigional wind is inserted. It is worth mentioning, although
of Sec. I, t_he time average of the system trajectory is closghis has not been explicitly addressed, that @t?) Tay-
to the origin[11]. The climatology of the shallow-water |or expansion of the resolvent can also predict the upper limit
model(see Fig. $is also close to the stationary state used tosf At where the procedure is likely to diverge. Although the
obtain the linearized system in E(2). Hence, in order to 1p shallow-water model is restrictive, the analyzed behavior
provide a robust explanation of the convergence behaviogt the convergence rate of direct insertion still holds for more
during the synchronization by direct insertion in more com-rg5istic models at least qualitatively. The fact that the model
plicated geophysical systems, we conjecture that the best Stg- qominated mainly by inertio-gravity modes is perhaps the

tionary states to be used for the linearization are those closegt;gon why the optimum time interval is smaller than the 12
to the climatology. Thesgguas) stationary states are gener- period suggested ifv].

ally referred to as weather or flow regimi@2]. In the atmo- We then focused on the variation of the synchronization
sphere such flqw regimes have been observed :?md have bggfle and the optimum time interval with latitude within the
noticed to persist for several weel&3]. The question of the previous 1D shallow-water model E@1). This question
existence ofquas) stationary states close to the climatology has peen brought up because the temporal and spatial reso-
has been addressed theoretically using simple barotropic Vofgtions of several observing systems and of most numerical
ticity equation as well as atmospheric general circulation,regiction models, respectively, are coarser equatorward. It
models[24]. _ , L is found, in particular, that the optimum inserting time inter-
These states play a crucial role in the predictability of the 5| varies as the inverse of the Coriolis parameter, meaning
atmospheric flow and it should not be surprising to find thaiat we should insert, or update, more frequently as we move
the optimum inserting time interval can be linked to thesesjeward. This rule is mostly valid around the midlatitudes
states and to the climatology. The importance of the climayynere the inverse of the Coriolis parameter does not vary
tology in this regard can be noted from E¢83) and(A4), considerably.
in the Hamiltonian system, for example, relating the rate of 5 simplified low-order dynamical system is derived from
convergence during the synchronization process to the meafg 1p shallow-water model by discarding some of the non-
state. In many instances, it is practical to just replace th@near terms rather in the manner [1]. This experiment
stationary state by the climatology although itis négaas)  \yas aimed at building a simple nonlinear dynamical system
stationary state. The climatology can be approximated by thg, help put the experimental results in an analytical frame-
time average of the model output over a long time periodyqrk. An approximation to the optimum time intenat, is
although a rigorous analytic determination of it from the¢y,nd to be V2/(2Q sing) when (,¢) are inserted. A

model equations is generally hopel¢8S]. Linearization of  gjighyiy different formula is found whenu( ¢) are inserted,
the flow around the climatology has long been used in othefq it'is shown that these formulas fit quite well with the

contexts to study, for example, the stability of the mean flowg, erimental results drawn from the nonlinear shallow-water
in order to provide explanations of the dynamical processeg,,qel.
responsible for the generation and maintenance of atmo- |y order to check whether the previous results can be ex-

spheric variability{ 26]. plained using a linear model, a linearized system derived
from the shallow-water model is introduced and an analysis
of the dependence of the synchronization on the inserting
time interval performed. It turns out that the linearized model

We have investigated the rate, or speed, of synchronizas able to explain the convergence behavior of the insertion
tion by direct insertion as a function of the inserting time procedure and allows estimation of the crossover pait
interval. The question has been first addressed theoreticalthrough the use of a®(At?) Taylor expansion of the resol-
within a simplified Hamiltonian system. This choice hasvent operator, which is simply an exponential matrix. This is
been made for two basic reasons. First, the chosen systempsomising because it is possible to use linear versions of
simple enough to be treated analytically but also complicatedhore complicated nonlinear systems to calculate their propa-
enough, due to its dynamical properties being similar to reagjators, which have simple forms, and then estimate the
systems. Second and foremost, geophysical systems are kl@essover point using a second-order Taylor expansion. The
sically Hamiltonian, especially when dissipation and forcingonly point which needs to be addressed is the choice of the
are weak. It is shown that up to a certain liniit,, that we  (quas) stationary state about which to linearize the model. It
termed the optimum time interval, the synchronization ratds suggested that the closdsjuas) stationary state to the
increases as the inserting time interval increases. Beyond thidimatology, or for practical purposes, the climatology itself,
optimum interval the synchronization rate decreases witltan be used in this regard.

VI. SUMMARY AND CONCLUSION
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Our results shed some light on the importance of the inwherey,=(1/n)2}_,y, is an average of the variabjefrom
serting time interval in synchronization. Several points, how-the trajectory. Fon large enoughy,, is approximately equal
ever, remain to be investigated. The main point is the extento the climatéy of the variabley (independent oAt because
sion of these results to more realistic models like a 2Dof the regular or stochastic character of the trajectpries
primitive equation model where several time scales arghat atO(At*) we have
present. The question of dissipation has not been explicitly
addressed, however, experiments performed with the addi- t2
tion of dissipation show that the results found previously are Inpp~— n7(1—2|7[). (A2)
quite robust to small dissipation and/or forcifgl]. The
same robustness is also observed when two different numerjyq notice first that the variablebelongs td —1/2, 1] for the
cal schemesfourth-order Runge-Kutta or leapfrpgre used p,nded motiori.e., boundedJ) which guarantees the con-
for the driving (control run and the driven systems, respec- o rqance of, towardsy asn tends to infinity. It can also be
tively, or vice versa, to mimic real situations in which Obser'shown[ll] thnat 1- 2y=0, implying thatly|<2, as required
vations are usually contaminated with noise although, in the convergence, i.e.p _’}0 when N oo. Itzi,s then clear
presence of realistic noise level, other techniques like KaITrom Eq.(A2) tha,t for If:rgen o, is a decreasing function of
man filtering[27] or variational adjustmeri28] can be used. (smal) 'At for At=At,. I't ;Iso shows thatp,, (A,t)

2

<pn,(Agt) for np=n; for which njA;t=nyAt. Further-

more, Eq.(A2) tells us that the spectral radius behaves, for
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fessor B. Harwood for helpful comments on the paper.
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(A3)

The optimal time interval is then defined as the one which

APPENDIX A: ON THE LIMITING BEHAVIOR minimizes the estimated spectral radius. Equati&d) gives
OF THE SPECTRAL RADIUS an approximation to the optimal time intervalt, after
OF THE AMPLIFICATION MATRIX which p, increases withAt. We have

We consider the amplification matrix given by Ed.6)
obtained whenly,p) are inserted. In the meantime it should V2
be noted that aO(At*), the situation corresponding to the =2\l
insertion of(x,y) can be shown to be an application of the v

simpler Cj‘st? Icorresponging to thel inserr:ior()op) Wr:iCh IS \vhich is very close to/2 (Y is generally very close to zero
presented below. In(gfk(irl)to analyze the spectral raplus  rina)ly e only note that it is also possible to derive from
=p(An), An=II 1Ry, , we analyze the two products gq (A3) an approximation to the lower bound at after

~V2(1+[yD), (A4)

Aty=

p, appearing in Eq(17). For smallAt?> we have which the process may diverga1].
n 2
Inpy=2 - A—t(li 2y,) +O(At?) APPENDIX B:
k=1 2 ANALYSES FOR THE SHALLOW-WATER MODEL
oot W S e snotted el systen a7
0 0 0 1 0 0 0 0
Rxg 0 Rx; 0 1 0 0 F
0 0 0 0 0 1 -F 0
, —1 2Ry; —-2Ry, 0 —2R¥x 2Rx, 0O O
FX= 5 4 0O 0 © 0 0 0 B1)
0 0 -1 0 0 0 0 0
Rz 0 R 0 0 0 0 Rx
Rz -R 0 0 O 0 —-Rx O

The operatolF’2(X(t)) is then given by
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1 —2Ry; 2Ry, 0 2Rx; —2RX, 0 0
RFz 1+RF 0 —RXg 0 —-Rx, 2RFx 0
RFz 0 1+RF 0 0 0 0 RFx
—2R%Xzy; —2RXx3 2R(X,—Rxyys) 1 —2Rys 2Ry, —2RFy, —2RFy,
B RX3 0 Rx, 0 1 0 0 F (B2)

0 0 0 0 0 1 —F 0
R?x,2, R2x, 0 -Rz 0 —-R  RF+R%>G 0

R?(Xg+ X1Z3) 0 2R?x, Rz R 0 0 RF+R?x?

while F’ (X(t)) can be derived simply by time differentiating the elements of the Jacébigf(t)). The O(At?) expression
of the resolvent is then obtained from E§0) using Eqs(B1) and(B2). It can be seen from E¢B1) that when the zonal wind
and the geopotential(¢) [that is, 1,X»,X3,2Z5,23)] are inserted, the amplification matrix given by Efj0) becomes

2
1—A7t R(—2x3(t)) + Fzo(t ) At) At R(2x,(ty) +[Fza(ty) + Rx(t) x3(t) JAt)AtL

2
RK = 0 1— A_t 0 (B3)
uu 2 b

0 0 1 AL
2

Equation(B3) shows that fordAt<v2, the convergence is faster for largkt from which Eq.(28) is derived. The expression
of Rﬁku) Eq. (B3) can also provide an upper limit aiit above which convergence may cease.
When (v, ) are insertedR{) becomes

At? 2 2
1-5- RYs(t)At ~Rys(t)At
" . t? At
Riu=| R(Xs(t)+[3ys(ty) —Fzy(t)JADAL 1—(1+ RF)T R Xl(tk)"_yl(tk)? At |. (B4)
At? At?
—RFZ3(tk)7 0 1—(1+RF)7

The form of Eq.(B4) does not explicitly allow an analytical This has similar structure to E¢B3) with similar eigenval-
study of the convergence as performed previously, and ities except that a new teriRF, appears in the eigenvalues of
would be helpful if we could get a similar expression to thatEq. (B5) due to the continuity equation which involves only
obtained when, ¢) is inserted. For this reason, the nonlin- y, In Eq. (B5) we have two eigenvalues, however, for small
ear term fronk, in Eq. (27) is dropped, and, since the model At, the spectral radiup, is (1—At?/2)" and then the con-
variablesz,,z; are small because they are wave perturbavergence rate is independent of the latitude for fieahdi-
tions tozy,=1, the termRFz andRFz are neglected from  mensional At to accuracyO(At%). But for largerAt the
Eq. (B4) (becauseR andF are also small With these large  spectral radiup,=|1— (1+RF)At%/2|", for which the op-
simplifications we end up with the following amplification timum interval is

matrix:
At? 5 5
1-— Rya(ty) At —Rys(ty) At " )
2 At,=v2(1+RF) Y2~v2(1-iRF), (B6)
® At?
Ry = 0 1_(1+RF)T 0
0 0 1—(1+RF)A—t2 with RF=®,/d?Q? sir? 2¢. For the value ofb, chosen in
2 the text, the preceding expression becomkg~v2(1

(B5) —0.023/siR 2¢).
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